Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-18T22:56:42.686Z Has data issue: false hasContentIssue false

Structure and Morphology of Epitaxially Intergrown (100)- and (116)-Oriented SrBi2Ta2O9 Ferroelectric Thin Films on SrLaGaO4(110) Substrates

Published online by Cambridge University Press:  17 March 2011

H. N. Lee
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
D. N. Zakharov
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
P. Reiche
Affiliation:
Institut für Kristallzüchtung, Max-Born-Str. 2, D-12489 Berlin, Germany
R. Uecker
Affiliation:
Institut für Kristallzüchtung, Max-Born-Str. 2, D-12489 Berlin, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
Get access

Abstract

SrBi2Ta2O9 (SBT) epitaxial thin films having a mix of (100) and (116) orientations have been grown on SrLaGaO4(110) by pulsed laser deposition. X-ray diffraction θ2 θ and pole figure scans, and cross-sectional transmission electron microscopy (TEM) analyses revealed the presence of two epitaxial orientations, SBT(100) ∥ SLG(110); SBT[001] ∥ SLG[001] and SBT(116) ∥ SLG(110); SBT [110] ∥ SLG[001]. By calculating the integrated intensity of certain x-ray diffraction peaks, it was established that the crystallinity and the in-plane orientation of the (100) and (116) orientation are best at a substrate temperature of 775 °C and 788 °C, respectively, and that the volume fraction of the (100) orientation at about 770 °C reached about 60%. By scanning force microscopy and cross-sectional TEM investigations we found that the a-axisoriented grains are rounded and protrude out due to the rapid growth along the [110] direction, leading to a distinct difference of the surface morphology between (100)- and (116)-oriented grains.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rae, A. D., Thompson, J. G., and Withers, R. L., Acta Crystallogr., Sect. B: Struct. Sci. 48, 418 (1992).Google Scholar
2. Moon, S. E., Song, T. K., Back, S. B., Kwun, S.-I., Yoon, J.-G., and Lee, J. S., Appl. Phys. Lett. 75, 2827 (1999).Google Scholar
3. Lettieri, J., Jia, Y., Urbanik, M., Weber, C. I., Maria, J-P., Schlom, D. G., Li, H., Ramesh, R., Uecker, R., and Reiche, P., Appl. Phys. Lett. 73, 2923 (1998).Google Scholar
4. Dabkowski, A., Dabkowska, H. A., and Greedan, J. E., J. Cryst. Growth 132, 205 (1993).Google Scholar
5. Lee, H. N., Zakharov, D. N., Senz, S., Pignolet, A., and Hesse, D., Appl. Phys. Lett. 79, 2961 (2001).Google Scholar
6. Miyazawa, S. and Mukaida, M., Jpn. J. Appl. Phys. 35, L1177 (1996).Google Scholar
7. Madhaven, S., Schlom, D. G., Dabkowski, A., Dabkowska, H. A., and Liu, Y., Appl. Phys. Lett. 68, 559 (1996).Google Scholar
8. Uecker, R., Reiche, P., Ganschow, S., Uecker, D.-C., and Schultze, D., Acta Phys. Pol. A 92, 23 (1997).Google Scholar
9. See, for instance, Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., and Hirata, K., Appl. Phys. Lett. 53, 2232 (1988).Google Scholar
10. Lee, H. N., Visinoiu, A., Senz, S., Harnagea, C., Pignolet, A., Hesse, D., and Gösele, U., J. Appl. Phys. 88, 6658 (2000).Google Scholar
11. Wang, X. K., Li, D. X., Li, D. Q., Lu, Y. P., Song, S. N., Shen, Y. H., Zheng, J. Q., Chang, R. P. H., Ketterson, J. B., Chabala, J. M., Hansley, D., and Levi-Setti, R., J. Appl. Phys. 67, 4217 (1990).Google Scholar
12. Choi, J. H., Lee, J. Y., and Kim, Y. T., Appl. Phys. Lett. 74, 2933 (1999).Google Scholar