Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T10:22:36.908Z Has data issue: false hasContentIssue false

Structure and Electronic Properties of Diamond-Like Amorphous Carbon

Published online by Cambridge University Press:  22 February 2011

C. Z. Wang
Affiliation:
Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011
K. M. Ho
Affiliation:
Ames Laboratory and Department of Physics, Iowa State University, Ames, IA 50011
Get access

Abstract

Amorphous carbon networks generated by quenching high-density liquid from hightemperature using a tight-binding molecular dynamics method are found to be dominated by tetrahedral bonding sites. The overall structural and electronic properties of these networks resemble those observed in experimental diamond-like amorphous carbon films produced by the mass-selected ion beam deposition technique. Our study shows that bonding and antibonding of π states associated with pairs and quartets of threefold “defected-atoms” embedded in the fourfold matrix yield a band gap of about 2 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] McKenzie, D. R., Muller, D., and Pailthorpe, B. A., Phys. Rev. Lett. 67, 773 (1991).Google Scholar
[2] For a review, see Robertson, J., Prog. Solid St. Chem. 21, 199 (1991).Google Scholar
[3] Veerasamy, V. S., Amaratunga, G. A. J., Milne, W. I., Hewitt, P., Fallon, P. J., McKenzie, D. R. and Davis, C. A., Diamond and Related Materials 2, 782 (1993).Google Scholar
[4] Gaskell, P. H., Saeed, A., Chieux, P., and McKenzie, D. R., Phys. Rev. Lett. 67, 1286 (1991).Google Scholar
[5] Veerasamy, V. S., Amaratunga, G. A. J., Davis, C. A., Timbs, A. E., Milne, W. I., and McKenzie, D. R., J. Phys: Condens. Matter 5 L169 (1993).Google Scholar
[6] Veerasamy, V. S., Yuan, J., Amaratunga, G. A. J., Milne, W. I., Gilkes, K. W. R., Weiler, M., and Brown, L. M., Phys. Rev. B, 48, 17954 (1993).Google Scholar
[7] Bacsa, W. S., Lannin, J. S., Pappas, D. L., and Cuomo, J. J., Phys. Rev. B, 47, 10931 (1993).Google Scholar
[8] Berger, S. D., McKenzie, D. R., and Martin, P. J., Phil. Mag. Lett. 57, 285 (1988).Google Scholar
[9] Kaukonen, H.-P. and Nieminen, R. M., Phys. Rev. Lett. 68, 620 (1992).Google Scholar
[10] Tersoff, J., Phys. Rev. B, 44, 12039 (1991).Google Scholar
[11] Kelires, P. C., Phys. Rev. Lett. 68, 1854 (1992).Google Scholar
[12] Robertson, J., Phil. Trans. R. Soc. Lond. A 342, 277 (1993).Google Scholar
[13] Frauenheim, Th., Blaudeck, P., Stephan, U., and Jungnickel, G., Phys. Rev. B, 48, 4823 (1993).Google Scholar
[14] Wang, C. Z. and Ho, K. M., Phys. Rev. Lett. 71, 1184 (1993).Google Scholar
[15] Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. B, 39, 8592 (1989).Google Scholar
[16] Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M., J. Phys: Condens. Matter 4, 6047 (1992).Google Scholar
[17] Fahy, S. and Louie, S. G., Phys. Rev. B, 34, 1191 (1986).Google Scholar
[18] Zhang, B. L., Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M., Phys. Rev. B, 46, 7333 (1992)Google Scholar
[19] Wang, C. Z., Ho, K. M., Chan, C. T., Phys. Rev. Lett. 70, 611 (1993).Google Scholar
[20] Wang, C. Z., Ho, K. M., Chan, C. T., Phys. Rev. B, 47, 14835 (1993).Google Scholar
[21] Andersen, H. C., J. Chem. Phys. 72, 2384 (1980).Google Scholar
[22] Biswas, R., Grest, G. S., and Soukoulis, C. M., Phys. Rev. B, 36, 7437 (1987); I. Kwon, R. Biswas, G. S. Grest, and C. M. Soukoulis, ibid 41, 3678 (1990).Google Scholar
[23] Wang, C. Z. and Ho, K. M., J. Phys: Condens. Matter 6, L239 (1994).Google Scholar