Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T19:46:23.519Z Has data issue: false hasContentIssue false

Structure and Chemistry of Ti Overlayers on α-Αl2O3(0001)

Published online by Cambridge University Press:  10 February 2011

S. Bernath
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
T. Wagner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
S. Hofmann
Affiliation:
National Research Institute for Metals, Tsukuba Laboratories, Tsukuba-SHI, Japan
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
Get access

Abstract

Ti thin films were grown by molecular-beam epitaxy (MBE) on α-Al2O3(0001) substrates. During room temperature deposition, in the very initial growth stage, AES investigations revealed a chemical reaction between the Ti and the α-Al2O3 substrate. An analysis of the AES data based on simple assumptions showed that ∼ 2 monolayers of Ti are oxidized. However, HRTEM analysis indicated an atomically smooth, incoherent interface, without a reaction layer. Reflection high-energy electron diffraction (RHEED) analysis revealed an epitaxial orientation relationship (0001)<2110> Ti ∥ (0001)<1010>Al2O3 between Ti and α-Al2O3(0001).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frost, H. J., Parker, M. A., Ross, C. A. and Holm, E. A., Polycrystalline Thin Films: Structure, Texture, Properties, and Applications II, (Mater. Res. Soc. Proc. 403, Pittsburgh, PA, 1996).Google Scholar
2. Machlin, A. S., Materials Science in Microelectronics, (Giro Press, Croton-on-Hudson, 1995).Google Scholar
3. Rühle, M., Evans, A. G., Ashby, M. F. and Hirth, J. P., Metal-Ceramic Interfaces, (Pergamon Press, 1989).Google Scholar
4. Dehm, G., Raj, R. and Rühle, M., in Polycristalline Thin Films: Structure, Properties, and Applications II, edited by Frost, H. J., Parker, M. A., Ross, C. A. and Holm, E. A. (Mater. Res. Soc. Proc. 403, Pittsburgh, PA, 1996) pp. 251–156.Google Scholar
5. Strecker, A., Salzberger, U. and Mayer, J., Prakt. Metallogr. 30, 481 (1993).Google Scholar
6. Hoffman, A. and Paterson, P. J. K., Surf. Sci. 352–354, 993 (1996).Google Scholar
7. Ohuchi, F. S., J. Am. Ceram. Soc. 74, 1163 (1991).Google Scholar
8. Lefakis, H., Liekr, M., Reibloff, G. W. and Ho, P. S., Mater. Res. Soc. Proc. 54, 133 (1986).Google Scholar
9. Lu, H., Bao, C. L., Shen, D. H., Zhang, X. J., Cui, Y. D. and Lin, Z. D., J. Mat. Res. 30, 339 (1995).Google Scholar
10. Solomon, J. S. and Baun, W. L., Surf. Sci. 228, 449 (1978).Google Scholar
11. Rav, C. N., Sarma, D. D. and Hedge, M. S., Proc. R. Soc. London A370, 269 (1980).Google Scholar
12. Gandon, J. and Joud, J. C., J. Less Common Met. 69, 277 (1980).Google Scholar
13. Dehm, G., Scheu, C. and Rühle, M., Acta Mat. in press (1997).Google Scholar
14. Peddada, R., Sengupta, K., Robertson, I. M. and Birnbaum, H. K., in Metal-Ceramics Interfaces, edited by Rühle, M., Evans, A. G., Ashby, M. F. and Hirth, J. P. (Pergamon Press, Oxford, UK, 1990).Google Scholar
15. Bernath, S., Thesis, University of Stuttgart (1997).Google Scholar