Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T11:18:05.909Z Has data issue: false hasContentIssue false

Structural Stability Diagrams for Thin-Film Multilayers

Published online by Cambridge University Press:  10 February 2011

S. A. Dregia
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210
R. Banerjee
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210
H. L. Fraser
Affiliation:
Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210
Get access

Abstract

Structural stability in thin-film multilayers is described in terms of classical thermodynamics, involving the competition between bulk and interfacial energies. A new type of phase diagram is introduced, the biphase diagram, in which concurrent phase stabilities are mapped as a function of two degrees of freedom, corresponding to two independent layer thicknesses in a periodic multilayer. The model is used to explain our observations of phase stabilities in Al/Ti multilayers, as a function of varying layer thicknesses. The model is also applied to explain the experimental observations made by other investigators on phase stability in Co/Cr thin-film multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jesser, W. A. and Mattthews, J. W., Philos. Mag., 15, 1097 (1967).Google Scholar
2. Wormeester, H., Hüiger, E., and Bauer, E., Phys. Rev. Lett., 77, 1540 (1996).Google Scholar
3. Wilson, L. and Bienenstock, A., Mat. Res. Soc. Symp. Proc., 103, 69 (1988).Google Scholar
4. Prinz, G. A., Phys. Rev. Lett. 54, 1051 (1985).Google Scholar
5. Ahuja, R. and Fraser, H. L., J. Elec. Mater., 23, 1027 (1994).Google Scholar
6. Banerjee, R., Ahuja, R., and Fraser, H. L., Phys. Rev. Lett, 76, 3778 (1996).Google Scholar
7. Jankowski, A. F. and Wall, Mark A., J. Mater. Res., 9, 31 (1994).Google Scholar
8. Ounadjela, K., Vennegues, P., Henry, Y., Pierron-Bohnes, V., and Arabski, J., Phys. Rev. Bm 49, 8561 (1994).Google Scholar
9. Bruinsma, R. and Zangwill, A. M., J. Physique (Paris), 47, 2055 (1986).Google Scholar
10. Redfield, A. C. and Zangwill, A. M., Phys. Rev. B, 34, 1378 (1986).Google Scholar
11. Machlin, E. S., An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science (Giro Press, Croton-on-Hudson, NY, 1991) p. 131133.Google Scholar
12. Heerden, D. van, Josell, D., and Shectman, D., Acta mater., 44, 297 (1996).Google Scholar
13. Kaufman, L., CALPHAD, 1, 7 (1977).Google Scholar
14. Smallman, R. E., in Modem Phys. Met., (Butterworths and CO, Ltd., London, 1970) 3rd edGoogle Scholar
15. Partridge, P. G., Metall. Rev. 12, 169 (1967)Google Scholar
16. Kattner, U. R., Lin, J. -C., and Chang, Y. A., Metall. Trans. A, 23A, 2081 (1992).Google Scholar
17. Saunders, N., Miodownik, A. P., and Dinsdale, A. T., CALPHAD, 12, 351 (1988).Google Scholar
18. Asta, M., de Fontaine, D., and van Schilfgaarde, M., J. Mater. Res., 8, 2554 (1993).Google Scholar
19. Paxton, A. T., Methfessel, M. and Polatoglou, H. M., Phys. Rev. B, 41, 8127 (1990).Google Scholar
20. Schaffer, J., The Science and Design of Engineering Materials, Irwin, Chicago (1995).Google Scholar
21. Madan, A., Kim, I.W., Cheng, S.C., Yashar, P., Dravid, V.P. and Barnett, S.A., Phys. Rev. Letts, 78, 1743 (1997).Google Scholar
22. Metoki, N., Donner, W. and Zabel, H., Phys. Rev., 49, 17351 (1994).Google Scholar
23. Boher, P., Giron, F., Houdy, Ph., Beauvillain, P., Chappert, C. and Viellet, P., J. Appl. Phys., 70, 5507 (1991).Google Scholar
24. Vavra, W., Barlett, D., Egaloz, S., Uher, C. and Clarke, Roy, Phys. Rev. B., 47, 5500 (1993).Google Scholar