Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T19:43:18.659Z Has data issue: false hasContentIssue false

Structural Properties of β-FeSi2 Bulk Crystal Grown by Horizontal Gradient Freeze Method

Published online by Cambridge University Press:  15 February 2011

H. Kakemoto
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan. Science University of Tokyo, 1-3 Kagurazaka, Shinjuku, Tokyo 162, Japan.
Y. Tsaic
Affiliation:
Union Material, 1640 Oshido-jyodai, Tonemachi, Ibaraki 270-12, Japan.
A. C. Beye
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan. University Cheikh Anta Diop of Dakar, GPSSM, B.P. 5376, Dakar, Senegal.
H. Katsumata
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan. Meiji University, 1-1-1 Higashi-mita, Tama, Kawasaki, Kanagawa 214, Japan.
S. Sakuragi
Affiliation:
Union Material, 1640 Oshido-jyodai, Tonemachi, Ibaraki 270-12, Japan.
Y. Makita
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan.
A. Obaraa
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan.
N. Kobayashi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan.
H. Shibata
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan.
S. Uekusa
Affiliation:
Meiji University, 1-1-1 Higashi-mita, Tama, Kawasaki, Kanagawa 214, Japan.
T. Tsukamoto
Affiliation:
Science University of Tokyo, 1-3 Kagurazaka, Shinjuku, Tokyo 162, Japan.
T. Tsunoda
Affiliation:
National Institute of Material and Chemical Research, 1-1 Tsukuba-Higashi, Ibaraki 305, Japan.
Y. Imaif
Affiliation:
National Institute of Material and Chemical Research, 1-1 Tsukuba-Higashi, Ibaraki 305, Japan.
Get access

Abstract

We report on the synthesis of β-FeSi2 bulk materials using Horizontal Gradient Freeze (HGF) method. Chunk and powder FeSi2 or high-purity Fe (4N) and Si (9N) were used as starting materials. Three values (1:2, 2:5 and 1:3) of the Fe:Si ratio were selected in the very narrow α and β ranges of the equilibrium phase diagram. Samples were melted between 1300°C and 1500°C in high purity graphite crucibles covered with boron nitride. After cooling, the samples were kept at 800°C and 900°C during 66 to 100 hours, leading to transformation from α to β phase. Cooling rate and annealing time were taken as the two main parameters to optimize the growth conditions. Principal structural characterization was made by X-ray diffraction (XRD). Correlation with stoichiometry was achieved using the results of Rutherford Backscattering Spectroscopy (RBS) and Electron Probe X-Ray Micro Analysis (EPXMA). The samples obtained from 1:2 ratio exhibited mainly β phase while the 2:5 ratio specimens revealed almost α phase structure. The samples prepared with 1:3 ratio was found as a mixture of α and β phases under Si-rich conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Derrien, J., Chevrier, J., Tranh, V. Le, and Mahan, J. E., Appl. Surface Sci. 56–58, 382 (1992).Google Scholar
2. Mantl, S., Nucl. Instrum. Methods Phys. Res. Sect. B80/81, 895 (1993).Google Scholar
3. Miki, T., Matsui, Y., Matsubara, K., Kishimoto, K., Nagao, K., and Fujii, Y., in the Proceedings of the 12th International Conference on Thermoelectrics, edited by Matsuura, K. (1993 November 9–11 Yokohama/Japan), p.2933.Google Scholar
4. Katsumata, H., Shen, H. L., Kobayashi, N., Makita, Y., Hasegawa, M., Shibata, H., Kimura, S., and Obara, A., in the Proceedings of the 9th International Conference on Ion Beam Modification of Materials (IBMM 95 Camberra, Australia, 5–10 February 1995).Google Scholar
5. Holk, C. H., Yalisove, S. M. and Doll, G. L., Phys. Rev. B52, 1692 (1995).Google Scholar
6. Miglio, L. and Malegori, G., Phys. Rev. B52, 1448 (1995).Google Scholar
7. Arushanov, E., Bucher, E., Kloc, Ch., Kulikova, O, Kulyuk, L., and Siminel, A., Phys. Rev. B52, 20 (1995).Google Scholar
8. Kloc, Ch., Arushanov, E., Wendl, M., Hohl, H., Malang, U., and Bucher, E, J. of Alloys and Compounds 219, 93 (1995).Google Scholar
9. Olk, C. H., Karpenko, O. P., Yalisove, S. M., and Doll, G. L., J. Mat. Res. 9, 324 (1994).Google Scholar
10. Radermacher, K., Carius, R., and Mantl, S., Nucl. Instrum. Methods Phys. Res. B84, 163 (1994).Google Scholar
11. Giannini, C., Lagomarsino, S., Scarinci, F., and Castrucci, P., Phys. Rev B45, 8822 (1992)Google Scholar
12. Crumbaker, T. E., Natoli, J. Y., Berbezier, I., and Derrien, J., J. Crystal Growth 127, 158 (1993).Google Scholar
13. Andre, J. P., Alaoui, H., Deswarte, A., Zheng, Y., Petroff, J. F., Wallart, X.. and Nys, J. P., J. Crystal Growth 144, 29 (1994).Google Scholar