Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T17:25:18.907Z Has data issue: false hasContentIssue false

Structural Investigation of Photoluminescent Porous Si by Transmission Electron Microscopy

Published online by Cambridge University Press:  25 February 2011

S. Shih
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
K. H. Jung
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712.
Get access

Abstract

We have developed a new, minimal damage approach for examination of luminescent porous Si layers (PSLs) by transmission electron microscopy (TEM). In this approach, chemically etched PSLs are fabricated after conventional plan-view TEM sample preparation. A diffraction pattern consisting of a diffuse center spot, characteristic of amorphous material, is primarily observed. However, crystalline, microcrystalline, and amorphous regions could all be observed in selected areas. A crystalline mesh structure could be observed in some of the thin areas near the pinhole. The microcrystallite sizes were 15–150 Å and decreased in size when located further from the pinhole.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Light Emission from Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T., (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1992).Google Scholar
3. Uhlir, A., Bell System Technical J. 35, 333 (1956).Google Scholar
4. Turner, D.R., J. Electrochem. Soc. 105, 402 (1958).Google Scholar
5. Fathauer, R.W., George, T., Ksendzov, A., and Vasquez, R.P., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
6. Sarathy, J., Shih, S., Jung, K.H., Tsai, C., Li, K.-H., Kwong, D.-L., Campbell, J.C., Yau, S.-L., and Bard, A.J., Appl. Phys. Lett. 60, 1532 (1992).Google Scholar
7. Shih, S., Jung, K.H., Hsieh, T.Y., Sarathy, J., Campbell, J.C., and Kwong, D.L., Appl. Phys. Lett. 60, 1863 (1992).Google Scholar
8. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
9. Sui, Zhifeng, Leong, Patrick P., Herman, Irving P., Higashi, Gregg S., and Henryk Temkin, Light Emission from Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T., (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1992) pp. 1316.Google Scholar
10. Wu, Y.-J., Zhao, X.S., and Persans, P.D., edited by Iyer, S.S., Collins, R.T., and Canham, L.T., (Mater. Res. Soc. Proc. 256, Pittsburgh, PA, 1992) pp. 6972.Google Scholar
11. Gardelis, S., Rimmer, J.S., Dawson, P., Hamilton, B., Kubiak, R.A., Whall, T.E., and Parker, E.H.C., Appl. Phys. Lett. 59, 2118 (1991).Google Scholar
12. Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B.K., and White, J.M., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
13. Vasquez, R.P., Fathauer, R.W., George, T., Ksendzov, A., and Lin, T.L., Appl. Phys. Lett. 60, 1004 (1992).Google Scholar
14. Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E., and Searson, P.C., Physical Rev. B 45, 13788 (1992).Google Scholar
15. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
16. Arita, Y., J. Crystal Growth 45, 383 (1978).Google Scholar
17. Unagami, T. and Seki, M., J. Electrochem. Soc. 125, 1339 (1978).Google Scholar
18. Phillipp, F., Urban, K., and Wilkens, M., Ultramicroscopy 13, 379 (1984).Google Scholar
19. Beale, M.I.J., Chew, N.G., Uren, M.J., Cullis, A.G., and Benjamin, J.D., Appl. Phys. Lett. 46, 86 (1985).Google Scholar
20. Chuang, S.-F., Collins, S.D., and Smith, R.L., Appl. Phys. Lett. 55, 1540 (1989).Google Scholar
21. Chuang, S.-F., Collins, S.D., and Smith, R.L., Appl. Phys. Lett. 55, 675 (1989).Google Scholar
22. Sugiyama, H. and Nittono, O., J. Crystal Growth 103, 156 (1990).Google Scholar
23. Pickering, C., Beale, M.I.J., Robbins, D.J., Pearson, P.J., and Greef, R.J., J. Phys. C: Solid State Phys. 17, 6535 (1984).Google Scholar
24. Goodes, S.R., Jenkins, T.E., Beale, M.I.J., Benjamin, J.D., and Pickering, C., Semicond. Sc. Technol. 3, 483 (1988).Google Scholar
25. Noguchi, N., Suemune, I., Yamanishi, M., Hua, G.C., and Otsuka, N., Jap. J. Appl. Phys. 31, 229 (1992).Google Scholar
26. Jung, K.H., Shih, S., Kwong, D.L., George, T., Lin, T.L., Liu, H.Y., and Zavada, J., J. Electrochem. Soc. 139, 3363 (1992).Google Scholar
27. George, T., Anderson, M.S., Pike, W.T., Lin, T.L., Fathauer, R.W., Jung, K.H., and Kwong, D.L., Appl. Phys. Lett. 60, 2359 (1992).Google Scholar
28. Perez, J.M., Villalobos, J., McNeill, P., Prasad, J., Cheek, R., Kelber, J., Estrera, J.P., Stevens, P.D., and Glosser, R., Appl. Phys. Lett. 61, 563 (1992).Google Scholar
29. Wolford, D.J., Scott, B.A., Reimer, J.A., and Bradley, J.A., Physica 117B&118B, 920 (1983).Google Scholar