Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T09:50:56.687Z Has data issue: false hasContentIssue false

Structural Disorder and Localized Gap States in Silicon Grain Boundaries from a Tight-Binding Model

Published online by Cambridge University Press:  10 February 2011

F. Cleri
Affiliation:
Divisione Materiali Avanzati, ENEA, Centro Ricerche Casaccia, C.P. 2400, 00100 Roma, (Italy)
P. Keblinski
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, (USA)
L. Colombo
Affiliation:
Dipartimento di Scienza dei Materiali, Università di Milano, and Istituto Nazionale per la Fisica della Materia, via Emanueli 15, 20126 Milano, (Italy)
S. R. Phillpot
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, (USA)
D. Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, (USA)
Get access

Abstract

Tight-binding molecular dynamics simulations of typical high-energy grain boundaries in silicon show that the atomic structure of the interface in thermodynamic equilibrium is similar to that of bulk amorphous silicon and contains coordination defects. The corresponding electronic structure is also amorphous-like, displaying extra states in the forbidden gap mainly localized around the coordination defects, where large changes in the bond-hybridization character are observed. It is proposed that such coordination defects in disordered high-energy grain boundaries are responsible for the experimentally observed gap states in polycrystalline Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fraas, L.M., J. Appl. Phys. 49, 871 (1978).Google Scholar
2. Ravi, K. V., Imperfections and Impurities in Semiconductor Silicon, (John Wiley, New York, 1981), p. 298.Google Scholar
3. Jackson, W.B., Johnson, N.M. and Biegelsen, D.K., Appl. Phys. Lett. 43, 195 (1983).Google Scholar
4. Fortunato, G. and Migliorato, P., Appl. Phys. Lett. 49, 1025 (1986).Google Scholar
5. Jousse, D., Delage, S.L. and Iyer, S.S., Phil. Mag. B63, 443 (1991).Google Scholar
6. Soukoulis, C.M., Cohen, M.H. and Economou, E.N., Phys. Rev. Lett. 53, 616 (1984).Google Scholar
7. Keblinski, P., Phillpot, S. R., Wolf, D. and Gleiter, H., J. Am. Cer. Soc. 80, 717 (1997).Google Scholar
8. DiVincenzo, D.P., Alerhand, O. L., Schlüter, M. and Wilkins, J. W., Phys. Rev. Lett. 56, 1925 (1986).Google Scholar
9. Kohyama, M. and Yamamoto, R., J. Phys. C, Solid St. Phys. 21, 3205 (1988).Google Scholar
10. Paxton, A.T. and Sutton, A.P., Acta Metall. 37, 1693 (1989).Google Scholar
11. Wolf, D., J. Physique C4, 197 (1984).Google Scholar
12. Kohyama, M. and Yamamoto, R., Phys. Rev. B49, 17102 (1994).Google Scholar
13. Tarnow, E. et al., Phys. Rev. B42, 3644 (1990).Google Scholar
14. Keblinski, P. et al., Acta Mater. 45, 987 (1997).Google Scholar
15. Kwon, I., Biswas, R., Wang, C. Z., Ho, K. M. and Soukoulis, C. M., Phys. Rev. B49, 7242 (1994).Google Scholar
16. Tang, M. et al., Phys. Rev. B55, 14279 (1997).Google Scholar
17. Tersoff, J., Phys. Rev. Lett. 61, 2879 (1988).Google Scholar
18. Stich, I., Car, R. and Parrinello, M., Phys. Rev. B44, 11092 (1991).Google Scholar
19. Colombo, L. and Marie, M., Europhys. Lett. 29, 623 (1995).Google Scholar
20. Ley, L., Kowalczyc, S., Pollack, R. and Shirley, D. A., Phys. Rev. Lett. 29, 1088 (1972).Google Scholar
21. Reichardt, J., Ley, L. and Johnson, R.L., J. Non-Cryst. Solids 35/36, 256 (1985).Google Scholar
22. Fedders, P.A., Drabold, D.A. and Klemm, S., Phys. Rev. B45, 4048 (1992).Google Scholar
23. Hasegawa, S., Takenaka, S. and Kurata, Y., J. Appl. Phys. 53, 5022 (1982).Google Scholar