Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T06:43:39.990Z Has data issue: false hasContentIssue false

Structural Defects related issues of GaN-based Laser Diodes

Published online by Cambridge University Press:  01 February 2011

Shigetaka Tomiya
Affiliation:
Material Analysis Dept. Sony EMCS Corporation, Atsugi, Kanagawa, 243–0021, Japan
Motonobu Takeya
Affiliation:
Shiroishi Laser Center, MSNC DSC Semiconductor Laser Div., Sony Corporation Shiroishi, Miyagi, 989–0734, Japan
Shu Goto
Affiliation:
Shiroishi Laser Center, MSNC DSC Semiconductor Laser Div., Sony Corporation Shiroishi, Miyagi, 989–0734, Japan
Masao Ikeda
Affiliation:
Shiroishi Laser Center, MSNC DSC Semiconductor Laser Div., Sony Corporation Shiroishi, Miyagi, 989–0734, Japan
Get access

Abstract

Structural defects affecting the lifetime of GaN-based laser diodes (LDs) on epitaxial lateral overgrown (ELO) GaN layers have been investigated. Almost all of the threading dislocations that appeared in the wing regions have edge character, whereas the dislocations at the coalescence boundaries have both edge character and mixed character. The origins of the threading dislocations in the wing regions are the lateral extension of dislocations from the seed regions that contingently bend upwards to the epi-surface. Thus, edge dislocations are most considerable threading dislocations in GaN-based LDs on ELO GaN layers, since the laser stripes are fabricated in the wing regions. In the degraded LDs, neither dislocation multiplication from the threading dislocations nor any structural changes of the threading dislocations were observed. This indicates that degradation is not caused by dislocation multiplication at the active layers, which is usually observed in LDs featuring zincblende-based structures. Although the threading dislocations in the LD stripes do not multiply during device operation, our degradation experiments revealed that the lifetime of the GaN-based LDs depends on the dislocation density. The degradation rate was almost proportional to the square root of the aging time. Our results indicate that degradation is governed by a diffusion process, and a detailed degradation mechanism is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett., 48, 353355, (1986).Google Scholar
2. Tojyo, T., Asano, T., Takeya, M., Hino, T., Kijima, S., Goto, S., Uchida, S., and Ikeda, M., Jpn. J. Appl. Phys., 40, 32063210, (2001).Google Scholar
3. Nagahama, S., Iwasa, N., Senoh, M., Matsushita, T., Sugimoto, Y., Kiyoku, H., Kozaki, T., Sano, M., Matsumura, H., Umemoto, H., Chocho, K. and Mukai, T., Jpn. J. Appl. Phys. 39, L647650, (2000).Google Scholar
4. Sugahara, T., Sato, H., Hao, M., Naoi, Y., Kurai, S., Tottori, S., Yamashita, Y., Nishino, K., Romano, L.T., and Sakai, S., Jpn. J. Appl. Phys., 37, L398400, (1998).Google Scholar
5. Ueda, O., “Reliability and Degradation of III-V Optical Devices” (Artech House, Boston, 1996).Google Scholar
6. Zheleva, Tsvetanka S., Smith, Scott A., Thomson, Darren B., Linthicum, Kevin J., Rajagopal, Pradeep, and Davis, Robert F., J. Electron. Mater., 28, L6L8, (1999).Google Scholar
7. Linthicum, Kevin J., Gehrke, Thomas, Thomson, Darren, Carlson, Eric, Rajagopal, Pradeep, Smith, Tm, Batchelor, Dale, and Davis, Robert, Appl. Phys. Lett., 75, 196198, (1999).Google Scholar
8. Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S. and Ikeda, M., Appl. Phys. Lett., 76, 3421, (2000).Google Scholar
9. Sakai, Akira, Sunakawa, Haruo and Usui, Akira, Appl. Phys. Lett., 71, 22592261, (1999).Google Scholar
10. Suzuki, K. and Takeuchi, S., Phil. Mag. Lett., 423428, (1999).Google Scholar
11. Tomiya, S., Morita, E., Ukita, M., Okuyama, H., Itoh, S., Nakano, K. and Ishibashi, A., Appl. Phys. Lett., 66, 12081210, (1995).Google Scholar
12. Peach, M. and Koehler, J.S., Phys, Rev., 80, 436439, (1950).Google Scholar
13. Sugiura, Lisa, J. Appl. Phys., 81, 16331638, (1997).Google Scholar
14. Maeda, K., Suzuki, K., Ichihara, M., Nishiguchi, S., Ono, K., Mera, Y., Takeuchi, S., Physica B 273–274, 134139, (1999).Google Scholar
15. Uchida, Shiro, Takeya, Motonobu, Ikeda, Shiro, Mizuno, Takashi, Fujimoto, Tsuyoshi, Matsumoto, Osamu, Goto, Shu, Tojyo, Tsuyoshi, and Ikeda, Masao, IEEE J. S. Quantum Electronics, 9, 12521259, (2003).Google Scholar
16. Goto, S., Tamamura, K., Matsumoto, O., Tojyo, T., Sasaki, T., Yabuki, Y., Naganuma, K., Asatsuma, T., Tomiya, S., Uchida, S., and Ikeda, M., presented at the Late News Abstract, 2003 Electronic Materials Conf., Santa Barbara, CA, 2002, V9.Google Scholar
17. Tomiya, S., Goto, S., Takeya, M. and Ikeda, M., MRS proceedings 743, 843, (2002).Google Scholar
18. Hansen, M., Chen, L.F., Lim, S.H., DenBaars, S.P., and Speck, J.S., Appl. Phys. Lett., 80, 24692471, (2002).Google Scholar