Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T23:30:18.180Z Has data issue: false hasContentIssue false

Structural Defects in GaN Epilayers Grown by Gas Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

Z. Sitar
Affiliation:
Department of Materials Science and Engineering, Campus Box 7907, North Carolina State University, Raleigh, NC 27695-7907
M. J. Paisley
Affiliation:
Department of Materials Science and Engineering, Campus Box 7907, North Carolina State University, Raleigh, NC 27695-7907
B. Yan
Affiliation:
Department of Materials Science and Engineering, Campus Box 7907, North Carolina State University, Raleigh, NC 27695-7907
R. F. Davis
Affiliation:
Department of Materials Science and Engineering, Campus Box 7907, North Carolina State University, Raleigh, NC 27695-7907
Get access

Abstract

Single crystal cubic or hexagonal GaN thin films have been grown on various substrates, using a modified gas source MBE technique. A standard effusion cell was employed for the evaporation of gallium. A compact electron cyclotron resonance plasma source was used to activate the nitrogen prior to deposition. The films were examined by transmission electron microscopy. The major defects in the wurtzite GaN were double positioning boundaries, inversion domain boundaries, and dislocations. The zinc-blende GaN showed microtwins, stacking faults, and dislocations. The connection between the observed structural defects and the poor electrical properties of GaN is noted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Das, K. and Ferry, D. K., Solid State Electron. 19, 851 (1976).Google Scholar
2. Davis, R. F., Sitar, Z., Williams, B. E., Kong, H. S., Kim, H. J., Palmour, J. W., Edmond, J. A., Ryu, J., Glass, J. T., and Carter, C. H., Jr., Mat. Sci. & Eng. B 1, 77 (1988).Google Scholar
3. Ilegems, M. and Montgomery, H. C., J. Phys. Chem. Solids 34, 885 (1973).Google Scholar
4. Seifert, W., Franzeld, R., Butter, E., Sobotta, H., and Riede, V., Crys. Res. Technol. 18, 383 (1983).Google Scholar
5. Paisley, M. J., Sitar, Z., Posthill, J. B., and Davis, R. F., J. Vac. Sci. Technol. A 7, 701 (1989).Google Scholar
6. Sitar, Z., Paisley, M. J., Smith, D. K., and Davis, R. F., to be published in Rev. Sci. Instr.Google Scholar
7. Sitar, Z., Paisley, M. J., Yan, B., Ruan, J., Choyke, J. W., and Davis, R. F., to be published in J. Vac. Sci. Technol B, March/April (1990).Google Scholar
8. Bravman, J. C. and Sinclair, R., J. Electron Microsc. Technol. 1, 53 (1987).Google Scholar
9. Stowell, M. J., in Epitaxial Growth, part B, edited by Matthews, J. W. (Academic Press, Inc., New York, 1975) p. 465.Google Scholar
10. Kong, H. S., Jiang, B. L., Glass, J. T., Rozgonyi, G. A., and More, K. L., J. Appl. Phys. 63, 2645 (1988).Google Scholar
11. Bommel, A. J., Crombeen, J. E., and van Tooren, A., Surface Sci. 48,463 (1975).Google Scholar
12. Sasaki, T. and Matsuoka, T., J. Appl. Phys. 64, 4531 (1988).Google Scholar
13. Twigg, M.E. and Richmond, E.D., J. Appl. Phys. 64, 3037 (1988).Google Scholar
14. Posthill, J. B., Tarn, J. C. L., Humphreys, T. P., Das, K., Wortman, J. J., and Parikh, N. R., Proc. 46th Ann. Meet. Electron Microsc. Soc. Am., edited by Bailey, G. W., 896 (1988).Google Scholar