Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T20:47:35.586Z Has data issue: false hasContentIssue false

Structural Characterization of GA on Si(112) by Auger Electron Diffraction

Published online by Cambridge University Press:  21 February 2011

J. E. Yater
Affiliation:
NRC Post ctoral Fellow
A. Shih
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Y. U. Idzerda
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

The structure of Ga overlayers on stepped Si(112) surfaces is investigated using the technique of Auger electron diffraction (AED). Although previous studies suggest that the Ga adatoms form well-ordered chains along the stepped Si(112) surface, no studies to date have determined the exact Ga adsorption sites on the Si(112) surface. However, low energy AED measurements on adsorbate structures are very sensitive to the adsorption site position and geometry due to strong backscattering from substrate atoms. In this work, low energy Ga AED data is analyzed using single scattering cluster (SSC) calculations. The analysis is able to differentiate between step edge and terrace adsorption site models for the Ga/Si(112) structure, as well as determine the detailed adsórbate geometry on the surface. The Ga overlayer model deduced from the data places the Ga adatoms 1.0 Å below the substitutions step edge sites of the non-primitive Si(112) surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fadley, C.S., in Synchrotron Radiation Research: Advances in Surface Science, edited by Bachrach, R.Z. (Plenum, New York, 1990), and references therein.Google Scholar
2. Chambers, S.A., Adv. Phys. 40, 357 (1991).Google Scholar
3. Egelhoff, W.F. Jr, Crit. Rev. Solid State Mat. Sci. 16, 213 (1990).Google Scholar
4. Jonker, B.T., Surf. Sci. Lett. 306, L555 (1994).Google Scholar
5. Rehr, J.J. and Albers, R.C., Phys. Rev. B 41, 8139 (1990).Google Scholar
6. Friedman, D.J. and Fadley, C.S., J. Electron Spectrosc. Relat. Phenom. 51, 689 (1990).Google Scholar
7. Idzerda, Y.U. and Ramaker, D.E., Phys. Rev. Lett. 69, 1943 (1992).Google Scholar
8. Greber, T. et al., Phys. Rev. Lett. 69, 1947 (1992).Google Scholar
9. Frank, D.G., Batina, N., Golden, T., Lu, F., and Hubbard, A.T., Science 247, 182 (1990).Google Scholar
10. Terminello, L.J. and Barton, J.J., Science 251, 1218 (1991).Google Scholar
11. Greber, T., Osterwalder, J., Hufner, S., and Schlapbach, L., Phys. Rev. B 45, 4540 (1992).Google Scholar
12. Jung, T.M., Prokeš, S.M., and Kaplan, R., J. Vac. Sci. Technol. A 12, 1838 (1994); Surf. Sci. 289, L577 (1993).Google Scholar
13. Wang, X.S. and Weinberg, W.H., Surf. Sci. 314, 71 (1994).Google Scholar
14. Kaplan, R., Surf. Sci. 116, 104 (1982).Google Scholar
15. Wright, S. and Kroemer, H., Appl. Phys. Lett. 36, 210 (1980).Google Scholar
16. Gao, Y. and Cao, J., Phys. Rev. B 43, 9692 (1991).Google Scholar
17. Rehr, J.J., Mustre de Leon, J., Zabinsky, S.I., and Albers, R.C., J. Am. Chem. Soc. 113, 5135 (1991).Google Scholar
18. Weissmann, R. and Muller, K., Surf. Sci. Reports 105, 251 (1981).Google Scholar
19. Michel, E.G., Etelaniemi, V., and Materlik, G., J. Vac. Sci. Technol. A 11, 1812 (1993); Surf. Sci. 269, 89 (1992).Google Scholar
20. Bedrossian, P., Mortensen, K., Chen, D.M., and Golovchenko, J.A., Nucl. Instrum. Methods Phys. Res. B 48, 296 (1990).Google Scholar