Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T19:47:41.716Z Has data issue: false hasContentIssue false

Structural and mechanical properties of amorphous Zr–based alloy thin films

Published online by Cambridge University Press:  17 March 2011

S.G. Mayr
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, 104 S. Goodwin Ave., Urbana, IL 61801, U.S.A I. Physikalisches Institut, Bunsenstr. 9, 37073 Göttingen, Germany
M. Moske
Affiliation:
Forschungszentrum caesar, Friedensplatz 16, 53111 Bonn, Germany
K. Samwer
Affiliation:
I. Physikalisches Institut, Bunsenstr. 9, 37073 Göttingen, Germany
Get access

Abstract

The evolution of surface structures of coevaporated and sputtered amorphous Zr65Al7.5Cu27.5 films with varying deposition conditions is investigated primarily with scanning tunneling microscopy (STM). While vapor deposited thin films reveal pronounced structure formation, depending on parameters, such as substrate temperature, film composition (variation of the Al versus the Cu content) and the angle of incidence, comparable sputtered films hardly show any structure formation. With the help of a numerical analysis of the STM data, surface diffusion, self–shadowing and energy transfer in the case of sputtering can be identified as the main structure forming mechanisms. Presuming these atomic processes, it is possible to model the main experimentally observed features of amorphous thin film growth by the use of stochastic continuum growth equations, which are numerically solved. Additionally, the connection to intrinsic stress formation during film growth is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Doerner, M. F. and Nix, W. D., CRC Critical Reviews in Solid State and Materials Sciences 14, 225 (1988).Google Scholar
2. Barabasi, A. L., Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).Google Scholar
3. Hellman, F., J. Appl. Phys. 70, 5780 (1991).Google Scholar
4. Griffth, A. A., Phil. Trans. Roy. Soc. (London) 221 A, 163 (1920).Google Scholar
5. Asaro, R. J., Tiller, W. A., Metallurgical Transactions A 3, 1789 (1972).Google Scholar
6. Grinfeld, M. A., Dokl. Akad. Nauk SSSR 290, 1358 (1986).Google Scholar
7. Mayr, S. G., Moske, M. and Samwer, K., Europhys. Lett. 44, 465 (1998).Google Scholar
8. Mayr, S. G., Moske, M. and Samwer, K., Phys. Rev. B 60, 16950 (1999).Google Scholar
9. Mayr, S. G., Moske, M. and Samwer, K., Journal of metastable and nonocrystalline materials 8, 221 (2000).Google Scholar
10. Mayr, S. G., Ph. D. Thesis, Göttingen (2000).Google Scholar
11. Mayr, S. G. and Samwer, K., submitted (2001).Google Scholar
12. Salditt, T., Metzger, T. H., Peisl, J., Reinker, B., Moske, M., Samwer, K., Europhys. Lett. 32 (4), 331 (1995).Google Scholar
13. Reinker, B., Moske, M. and Samwer, K., Phys. Rev. B 56, 9887 (1997).Google Scholar
14. Geisler, H., Ph. D. Thesis, Augsburg (1996).Google Scholar
15. Raible, M., Mayr, S. G., Linz, S. J., Moske, M., Hänggi, P. and Samwer, K., Europhys. Lett. 50, 61 (2000).Google Scholar
16. Mayr, S. G., Moske, M., Samwer, K., Taylor, M.E. and Atwater, H.A., Appl. Phys. Lett. 75, 4091 (1999).Google Scholar