Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:47:16.370Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of SiCl4-based Microcrystalline Silicon Films

Published online by Cambridge University Press:  21 March 2011

Wolfhard Beyer
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Reinhard Carius
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Michael Lejeune
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Uwe Zastrow
Affiliation:
Institut für Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Structural and electronic properties of SiCl4-based microcrystalline silicon films were studied. A rather dense (non-porous) material structure is obtained near the transition to amorphous material, in particular at substrate temperatures of 250°C and above. Boron doping results in very high conductivity values while for phosphorus doping only lower values are reached. This latter effect is attributed to a different microstructure with lower crystalline fraction, higher hydrogen and chlorine content and increased porosity in highly phosphorus- doped material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beyer, W., Rech, B., Carius, R., Albert, M. and Terasa, R., Proceedings PV in Europe Intern. Conference, Rome, October 7-11, 2002 (WIP Munich and ETA-Florence, 2002) p. 75.Google Scholar
2. Beyer, W., Carius, R., Lejeune, M., Müller, J., Rech, B. and Zastrow, U., J. Non-Cryst. Solids (2004) (in press).Google Scholar
3. Roschek, T., Rech, B., Beyer, W., Werner, P., Edelman, F., Chack, A., Weil, R. and Beserman, R., MRS Symp. Proc. 664, A 25.5 (2001).Google Scholar
4. He, Y., Wei, Y., Zheng, G., Yu, M., Liu, M., J. Appl. Phys. 82, 5322(1989).Google Scholar
5. John, P., Odeh, T.M., Thomas, M.J.K. and Wilson, J.I.B., J. Physique Colloque 42, C4651 (1981).Google Scholar
6. Veprek, S., Iqbal, Z., Kühne, R.O., Capezzuto, P., Sarott, F.A. and Gimzewski, J.K., J. Phys. C: Solid State Phys. 16, 6241(1983).Google Scholar
7. Mück, A., Zastrow, U., Vetterl, O. and Rech, B., in: Secondary Ion Mass Spectrometry-SIMS XII (Elsevier Science, Amsterdam, 2000) p. 689.Google Scholar
8. Mahan, A.H., Raboisson, P., Williamson, D.L., Tsu, R., Solar Cells 21, 117(1987).Google Scholar
9. Beyer, W., Physica Status Solidi (c) 1, 1144(2004).Google Scholar
10. Beyer, W., in: Tetrahedrally Bonded Amorphous Semiconductors, ed. Adler, D. and Fritzsche, H. (Plenum Press, New York, 1985) p.129.Google Scholar
11. W, Beyer, Hapke, P. and Zastrow, U., Mat. Res. Soc. Symp. Proc. 467, 343(1997).Google Scholar
12. Payne, A.M. and Wagner, S., Appl. Phys. Lett. 76, 2949(2000).Google Scholar
13. Heintze, M. and Schmitt, M., Mat. Res. Soc. Symp. Proc. 420, 277(1996).Google Scholar
14. Carius, R., Finger, F., Backhausen, U., Luysberg, M., Hapke, P., Houben, L., Otte, M. and Overhof, H., Mat. Res. Soc. Symp. Proc. 467, 283(1997).Google Scholar