Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-13T04:32:49.604Z Has data issue: false hasContentIssue false

Structural and Electronic Properties of a-Gaas: A Tight-Binding–Molecular-Dynamics–Art Simulation

Published online by Cambridge University Press:  10 February 2011

Laurent J. Lewis
Affiliation:
Département de physique et GCM, Université de Montréal, C.P. 6128, Suce. Centre-Ville, Montréal, Québec, Canada H3C 3J7
Normand Mousseau
Affiliation:
Computational Physics — Faculty of Applied Physics, Technische Universiteit Delft, Lorentzweg 1, 2628 C J Delft, The Netherlands
Get access

Abstract

By combining tight-binding (TB) molecular dynamics (MD) with the recently-proposed activation-relaxation technique (ART), we have constructed structural models of a-GaAs and a-Si of an unprecedented level of quality: the models are almost perfectly four-fold coordinated and, in the case of a-GaAs, exhibit a remarkably low density of homopolar bonds. In particular, the models are superior to structures obtained using melt-and-quench TB-MD or quantum MD. We find that a-Si is best described by a Polk-type model, while a-GaAs resembles closely the mechanical model proposed by Connell and Temkin, which is free of wrong bonds. In this paper, the structural, electronic, and dynamical properties of a-GaAs based on this approach will be reviewed, and compared to experiment and other structural models. Our study provides much-needed information on the intermediate-range topology of amorphous tetrahedral semiconductors; in particular, we will see that the differences between the Polk and Connell-Temkin models, while real, are difficult to extract from experiment, thus emphasising the need for realistic computer models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dong, J. J., Drabold, D. A., Phys. Rev. B 54, 10284 (1996).Google Scholar
2. Polk, D.E., J. Non-Cryst. Sol. 5, 365 (1971).Google Scholar
3. Thèye, M.-L., Gheorghiu, A., and Launois, H., J. Phys. C: Solid St. Phys. 13, 6569 (1980).Google Scholar
4. Connell, G.A.N. and Temkin, R.J., Phys. Rev. B 9, 5323 (1974).Google Scholar
5. Phillips, J. C., Bonds and Bands in Semiconductors (Academic, New York, 1973).Google Scholar
6. Barkema, G.T. and Mousseau, N., Phys. Rev. Lett. 77, 4358 (1996).Google Scholar
7. Mousseau, N. and Barkema, G. T., Phys. Rev. E 57, to be published.Google Scholar
8. Goodwin, L., Skinner, A.J., and Pettifor, D.G., Europhys. Lett. 9, 701 (1989).Google Scholar
9. Molteni, C., Colombo, L., and Miglio, L., J. Phys.: Condens. Matter 6, 5243 (1994).Google Scholar
10. Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
11. Tersoff, J., Phys. Rev. B 39, 5566 (1989);Google Scholar
Smith, R., Nucl. Instr. Meth. in Phys. Res. B 67, 335 (1992);Google Scholar
Sayed, M., Jefferson, J.H., Walker, A.B., and Gullis, A.G., Nucl. Instr. Meth. in Phys. Res. B 102, 232 (1995).Google Scholar
12. Seong, H. and Lewis, L.J., Phys. Rev. B 53, 4408 (1996).Google Scholar
13. Molteni, C., Colombo, L., and Miglio, L., Phys. Rev. B 50, 4371 (1994).Google Scholar
14. Fois, E., Selloni, A., Pastore, G., Zhang, Q.-M., and Car, R., Phys. Rev. B 45, 13 378 (1992).Google Scholar
15. Ridgway, M.C., Glover, C.J., Foran, G.J., and Yu, K.M., preprint.Google Scholar
16. Cliche, L., Roorda, S., and Masut, R.A., Appl. Phys. Lett. 65, 1754 (1994).Google Scholar
17. Laaziri, K. and Roorda, S., private communication.Google Scholar
18. Udron, D., Thèye, M.-L., Raoux, D., Flank, A.-M., Lagarde, P., and Gaspard, J.-P., J. Non-Cryst. Solids 137&138, 131 (1991).Google Scholar
19. Wooten, F. and Weaire, D., Solid State Physics 40, 1 (1987).Google Scholar
20. Sénémaud, C., Belin, E., Gheorghiu, A., and Thèye, M.-L., Solid St. Comm. 55, 947 (1985).Google Scholar
21. Joannopoulos, J.D. and Cohen, M.L., Phys. Rev. B 10, 1545 (1974).Google Scholar
22. O'reilly, E.P. and Robertson, J., Phys. Rev. B 34, 8684 (1986).Google Scholar
23. Chehaidar, A., Zwick, A., Carles, R., and Bandet, J., Phys. Rev. B 50, 5345 (1994).Google Scholar
24. Mousseau, N. and Lewis, L.J., Phys. Rev. B 43, 9810 (1991).Google Scholar
25. Alben, R., Weaire, D., Smith, J.E., and Brodsky, M.H., Phys. Rev. B 11, 2271 (1975).Google Scholar