Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-30T03:03:08.985Z Has data issue: false hasContentIssue false

Structural and Electrical Properties of Thermally Annealed InN Thin Films on Native and Ain-Nucleated (00.1) Sapphire

Published online by Cambridge University Press:  15 February 2011

T. J. Kistenmacher
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723
S. A. Ecelberger
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723
W. A. Bryden
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland 20723
M. E. Hawley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The effects of thermal annealing at 400°C in 5 MTorr of N2 on the structural and electrical properties of thin films of InN grown at 100°C on native and AIN-nucleated (00.1) sapphire by reactive magnetron sputtering have been studied. The variations in the properties of the two sets of films have qualitatively similar, yet quantitatively different dependencies on anneal time. In each case, surface decomposition to give (101) textured rods of elemental indium is seen at short anneal times, and markedly so in the more highly strained films on the AIN-nucleated substrates. The electrical properties in both cases improve with annealing time, yielding a Hall Mobility that is enhanced 2–3 times relative to as-deposited films and similar to that for films grown at a substrate temperature of 400°C. The evolution of the electrical properties appears to be relatively insensitive to the surface decomposition and to largely reflect the nature of the bulk InN Matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For recent reviews, see: Davis, R. F. in The Physics and Chemistry of Carbides, Nitrides and Borides edited by Freer, R. (Kluwer Academic Publishers, Dordrecht, 1990), pp. 653669;Google Scholar
Edgar, J. H., J. Mater Res. 7, 235 (1992);Google Scholar
Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).CrossRefGoogle Scholar
2. See, for example, Hahn, H. and Juza, R., Anorg, Z.. Allg. Chem. 244, 111 (1940)CrossRefGoogle Scholar
MacChesney, J. B., Bridenbaugh, P. M., and O'Connor, P. B., Mat. Res Bull. 5, 783 (1970).Google Scholar
3. See, for example, Trainor, J. W. and Rose, K., Electr, J.. Mat. 3, 821 (1974);Google Scholar
Natarajan, B. R., Eltoukhy, A. H., Greene, J. E., and Barr, T. L., Thin Solid Films 69, 201 (1980);Google Scholar
Natarajan, B. R., Eltoukhy, A. H., Greene, J. E., and Barr, T. L., Thin Solid Films 69, 217 (1980);Google Scholar
Eltoukhy, A. H., Natarajan, B. R., Greene, J. E., and Barr, T. L., Thin Solid Films 69, 229 (1980);Google Scholar
Bryden, W. A., Ecelberger, S. A., and Kistenmacher, T. J., Proc. Mater. Res. Soc. 280, 509 (1993);CrossRefGoogle Scholar
Abernathy, C. R., Pearton, S. J., Ren, F., and Wisk, P. W., J. Vac. Sci. Technol. B 11, 179 (1993);Google Scholar
Guo, Q., Kato, O., and Yoshida, A., J. Appl. Phys. 73, 7969 (1993).CrossRefGoogle Scholar
4. Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Poehler, T. O., J. Appl. Phys. 68, 1541 (1990);Google Scholar
Bryden, W. A., Morgan, J. S., Fainchtein, R., and Kistenmacher, T. J., Thin Solid Films 213, 86 (1992).Google Scholar
5. Read, M. H. and Hensler, D. H., Thin Solid Films 10, 123 (1972).Google Scholar
6. Buerger, M. J., The Precession Method in X-Ray Crystallography (Wiley, New York, 1964).Google Scholar
7. For recent examples of the utilization of the X-ray precession method for the study of the in-plane heteroepitaxy for thin films of the Group INA nitrides, see Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Poehler, T. O., J. Appl. Phys. 68, 1541 (1990);Google Scholar
Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., Dayan, D., Fainchtein, R., and Poehler, T. O., J. Mat. Res. 6, 1300 (1991);Google Scholar
Kistenmacher, T. J., Bryden, W. A., Wickenden, D. K., and Ecelberger, S. A., Mat. Res. Soc. Symp. Proc. 208, 357 (1991);Google Scholar
Bryden, W. A., Morgan, J. S., Fainchtein, R., and Kistenmacher, T. J., Thin Solid Films 213, 86 (1992);CrossRefGoogle Scholar
Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 62, 1221 (1993).CrossRefGoogle Scholar