Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-13T17:57:17.380Z Has data issue: false hasContentIssue false

Stress in Hydrogenated Microcrystalline Silicon Thin Films

Published online by Cambridge University Press:  15 February 2011

D. Peiró
Affiliation:
Department of Applied Physics and Optics, Universitat de Barcelona, Av. Diagonal 647, 08028-Barcelona, Catalunya, Spain, jandreu@fao.ub.es.
C. Voz
Affiliation:
Department of Applied Physics and Optics, Universitat de Barcelona, Av. Diagonal 647, 08028-Barcelona, Catalunya, Spain, jandreu@fao.ub.es.
J. Bertomeu
Affiliation:
Department of Applied Physics and Optics, Universitat de Barcelona, Av. Diagonal 647, 08028-Barcelona, Catalunya, Spain, jandreu@fao.ub.es.
J. Andreu
Affiliation:
Department of Applied Physics and Optics, Universitat de Barcelona, Av. Diagonal 647, 08028-Barcelona, Catalunya, Spain, jandreu@fao.ub.es.
E. Martínez
Affiliation:
Department of Applied Physics and Optics, Universitat de Barcelona, Av. Diagonal 647, 08028-Barcelona, Catalunya, Spain, jandreu@fao.ub.es.
J. Esteve
Affiliation:
Department of Applied Physics and Optics, Universitat de Barcelona, Av. Diagonal 647, 08028-Barcelona, Catalunya, Spain, jandreu@fao.ub.es.
Get access

Abstract

Hydrogenated microcrystalline silicon films have been obtained by hot-wire chemical vapor deposition (HWCVD) in a silane and hydrogen mixture at low pressure (<5 × 10-2 mbar). The structure of the samples and the residual stress were characterised by X- ray diffraction (XRD). Raman spectroscopy was used to estimate the volume fraction of the crystalline phase, which is in the range of 86 % to 98%. The stress values range between 150 and -140 MPa. The mechanical properties were studied by nanoindentation. Unlike monocrystalline wafers, there is no evidence of abrupt changes in the force-penetration plot, which have been attributed to a pressure-induced phase transition. The hardness was 12.5 GPa for the best samples, which is close to that obtained for silicon wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Torres, P., Meier, J., Flückiger, R., Kroll, U., Selvan, J.A. Anna, Keppner, H. and Shah, A., Appl.Phys. Lett. 69, p. 1373 (1996).Google Scholar
2. Meiling, H., Brockhoff, A.M., Rath, J.K. and Schropp, R.E.I., J. Non-Cryst. Solids 227–230, p. 1202 (1998).Google Scholar
3. Yamamoto, K., Yoshimi, M., Suzuki, T., Tawada, Y., Okamoto, Y. and Nakajima, A., Proc. 2nd World Conference on Photovoltaic Solar Energy Conversion, Vol. II, 1999, p. 1284.Google Scholar
4. Matsumura, H., Jpn. J. Appl. Phys. 30, p. L1522 (1991).Google Scholar
5. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J. and Lloret, A., Appl. Phys. A 59, p. 645 (1994).Google Scholar
6. Middya, A.R., Lloret, A., Perrin, J., Huc, J., Moncel, J.L., Parey, J.Y. and Rose, G. in Amorphous Silicon Technology, edited by Hack, M., Schiff, E.A., Wagner, S., Matsuda, A. and Schropp, R. (Mat. Res. Soc. Proc. 377, San Francisco, CA, 1995) pp. 119124.Google Scholar
7. Brodsky, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B 16, p. 3556 (1977).Google Scholar
8. Kamins, T.I., Sensors and Actuators A21–23, p. 817 (1990).Google Scholar
9. Peiró, D., Bertomeu, J., Arrando, F. and Andreu, J., Mater. Lett. 30, p. 239 (1997).Google Scholar
10. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, p. 1564 (1992).Google Scholar
11. Weppelmann, E. R., Field, J. S. and Swain, M. V., J. Mater. Res. 8, p. 830 (1993).Google Scholar