Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-22T22:18:26.313Z Has data issue: false hasContentIssue false

Stress Free GaAs Grown On Si (100)

Published online by Cambridge University Press:  25 February 2011

A. Freundlich
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Parc Sophia Antipolis, Rue Bernard Gregory, 06560 Valbonne, France
J.C. Grenet
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Parc Sophia Antipolis, Rue Bernard Gregory, 06560 Valbonne, France
G. Neu
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Parc Sophia Antipolis, Rue Bernard Gregory, 06560 Valbonne, France
M. Teissere
Affiliation:
Laboratoire de Physique du Solide et Energie Solaire, CNRS, Parc Sophia Antipolis, Rue Bernard Gregory, 06560 Valbonne, France
Get access

Abstract

It is demonstrated that, using a suitable GaAs1-xPx buffer layer, stress free GaAs can be grown on Si (100) substrates. In fact the lattice mismatch between GaAs and GaAs1-xPx will introduce a (100) biaxial compressive stress component in the GaAs top layer. The magnitude of this lattice mismatch induced stress can be monitored from 1 to 7 Kbar by varying the P content of the buffer from × = 0.02 to × = 0.15. Results on GaAs/ GaAs1-xPx/ Si (100) ( but also on strained GaAs grown on GaAs1-xPx/GaAs(100)) are discussed in the light of photoluminescence and X-ray diffraction experiments. It is shown that, by adjusting the P composition in such buffer, the lattice mismatch induced stress can exactly compensate the thermoelastic stress, leading thus to an almost stress free GaAs at room (300K) or at low (2K) temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, Y., Freundlich, A., Kamada, H., Neu, G., Appl. Phys. Lett. 54, 45 (1989).CrossRefGoogle Scholar
2. Shichijo, H., Kao, Y.C., Kim, T.S., Taddiken, A.H., Matyi, R.J., Int. Phys. Conf. Ser., 106, 519 (1990)Google Scholar
3. Soga, T., Imori, T., Umeno, M., Hattori, S., Jpn. J. Appl. Phys. 26(5), L536 (1987).CrossRefGoogle Scholar
4. Sakai, S., Appl. Phys. Lett. 51, 1069 (1987).CrossRefGoogle Scholar
5. Yacobi, B.G., Jagannath, C., Zemon, S., Sheldon, P., Appl. Phys. Lett. 52, 555 (1988)Google Scholar
6. Boeck, J. De, Hoof, C. Van, Deneffe, K., Borghs, G., Jpn. J. Appl. Phys. Lett. to be published.Google Scholar
7. Strobl, G., Freundlich, A., Grenet, J.C., Teissere, M., Neu, G., J. Appl. Phys., to be published 15 June 1991 Google Scholar
8. Mathieu, H., Lefebvre, P., Allfgre, J., Gil, B., Regreny, A., Phys. Rev. B36, 6581 (1987)Google Scholar
9. Bir, G.L. and Pikus, G.E., “Symmetry and Strain-Induced Effects in Semiconductors” (Wiley,New York, 1974).Google Scholar
10. Freundlich, A., Grenet, J.C., Neu, G., Leycuras, A., Vèrid, C., Appl. Phys.Lett.52, 1976 (1988).Google Scholar
11. Freundlich, A., Kamada, H., Neu, G., Gil, B., Phys. Rev. B40, 1652 (1989).Google Scholar
12. Ashen, D.J., Dean, P.J., Hurle, D.T.J., Mullin, J.B., White, A.H., J. Phys. Chem. Solids 36, 1041 (1975).CrossRefGoogle Scholar
13. Nelson, R.J., Holonyak, H., Groves, W.O., Phys. Rev. B13, 5415 (1976).CrossRefGoogle Scholar
14. Freundlich, A., Neu, G., Grenet, J.C., Solid State Commun. 76(2), 87 (1990).CrossRefGoogle Scholar
15. Yao, T., Okada, Y., Kawanami, H., Matsui, S., Imagawa, A., Ichida, K., Mat. Res. Soc. Symp. Proc. Vol 91, p61 (1987).Google Scholar