Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-12T21:32:28.380Z Has data issue: false hasContentIssue false

Strength and Fracture Behavior of Aluminide Matrix Composites with Ceramic Fibers

Published online by Cambridge University Press:  10 February 2011

M. Inoue
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan, inoue@sanken.osaka-u.ac.jp
K. Suganuma
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan, inoue@sanken.osaka-u.ac.jp
K. Niihara
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan, inoue@sanken.osaka-u.ac.jp
Get access

Abstract

This paper investigates the fracture behavior of FeAl and Ni3AI matrix composites with ceramic continuous fibers 8.5–10 μm in diameter. When stress is applied to these composites, multiple-fracture of fibers predominately occurs before matrix cracking, because the load carried by the fibers reaches their fracture strength. Fragments which remain longer than the critical length can provide significant strengthening through load bearing even though fiber breaking has occurred. The ultimate fracture strength of the composites also depends on stress relaxation by plastic deformation of the matrix at a crack tip in the multiple-fractured fibers. Ductilizing of the matrix by B doping improves the ultimate strength at ambient temperatures in both composites. However, their mechanical properties at elevated temperatures are quite different. In the case of Ni3AI matrix composites, embrittlement of the matrix is undesirable for high strength and reliability at 873–973 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stoloff, N. S. and Alman, D. E., Mat. Res. Soc. Symp. Proc. Vol.194, 31 (1990)CrossRefGoogle Scholar
2. Bao, G., Genna, F., Hutchinson, J. W. and McMeeking, R. M., Mat. Res. Soc. Symp. Proc. Vol.194, 3 (1990)CrossRefGoogle Scholar
3. Inoue, M., Nagao, H., Suganuma, K. and Niihara, K., Mater. Sci. Eng. A, in pressGoogle Scholar
4. Inoue, M., Itoh, Y. and Suganuma, K., J. Jpn. Inst. Light Metals, 46, 327 (1996)CrossRefGoogle Scholar
5. Drapper, S. L., Gaydosh, D. J. and Nathal, M. V., J. Mater. Res., 5, 1976 (1990)CrossRefGoogle Scholar
6. Harakawa, M. and Abe, Y., J. Jpn. Soc. Comp. Mater., 17, 52 (1991)CrossRefGoogle Scholar
7. Hu, W., Wunderlich, W. and Gottstein, G., Acta Mater., 44, 2383 (1996); Erratum, Acta Mater., 45, 889 (1997)CrossRefGoogle Scholar
8. Yamamura, T., J. Jpn. Soc. Comp. Mater., 17, 24 (1991)CrossRefGoogle Scholar
9. Inoue, M., Suganuma, K. and Niihara, K., Mat. Res. Soc. Symp. Proc. Vol.460, 755 (1997)CrossRefGoogle Scholar
10. Cooper, G. A., in Composite Materials, Vol. 5, Fracture and Fatigue, (Academic Press 1974) p.415 Google Scholar
11. Li, J. C. M. and Liu, C. T., Scr. Mater., 33, 661 (1995)CrossRefGoogle Scholar
12. Aoki, K. and Izumi, O., J. Jpn. Inst. Metals, 43, 1190 (1979)CrossRefGoogle Scholar
13. Inoue, M., Suganuma, K. and Niihara, K., J. Mater. Sci. lett., in pressGoogle Scholar
14. Liu, C. T. and White, C. L., Acta Metall., 35, 643 (1987)CrossRefGoogle Scholar
15. Hippsley, C. A. and DeVan, J. H., Acta Metall., 37, 1485 (1989)CrossRefGoogle Scholar