Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T07:21:35.568Z Has data issue: false hasContentIssue false

Strain Tuned Magnetic Properties of Epitaxial Cobalt Ferrite Thin Films

Published online by Cambridge University Press:  10 February 2011

G. Hu
Affiliation:
Department of MS&E, Cornell University, Ithaca, NY 14853, gh47@cornell.edu
J.H. Choi
Affiliation:
Department of Mech. Engr. & Mater. Sci., Duke University, Durham, NC 22208
C.B. Eom
Affiliation:
Department of Mech. Engr. & Mater. Sci., Duke University, Durham, NC 22208
Y. Suzuki
Affiliation:
Department of MS&E, Cornell University, Ithaca, NY 14853, gh47@cornell.edu
Get access

Abstract

Epitaxial cobalt ferrite thin films have been fabricated on bare MgO substrates and compared to those grown on CoCr2O4 buffered MgAl2O4. Various structural characterizations, including x-ray diffraction, Rutherford backscattering spectroscopy and transmission electron microscopy, demonstrate excellent crystallinity of the films. Films grown under tension exhibit magnetic properties dominated by the stress anisotropy. In (110) oriented films grown on CoCr2O4 buffered MgAl2O4, post deposition annealing switched the in-plane easy and hard directions completely while no such behavior is observed in cobalt ferrite films grown on MgO. The anomalous behaviors observed in as-grown films and films after annealing can be explained in terms of lattice distortion and cation redistribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Margulies, D.T., Parker, F.T., Spada, F.E., Goldman, R.S., Li, J., Sinclair, R. and Berkowitz, A.E., Phys. Rev. B 53, 9175 (1996).10.1103/PhysRevB.53.9175Google Scholar
2. Margulies, D.T., Parker, F.T., Rudee, M.L., Spada, F.E., Chapman, J.N., Aitchson, P.R. and Berkowitz, A.E., Phys. Rev. lett. 79, 5162 (1997).10.1103/PhysRevLett.79.5162Google Scholar
3. Dorsey, P.C., Lubitz, P., Chrisey, D.B. and Horwitz, J.S., J. Appl. Phys. 79, 6338 (1996).10.1063/1.361991Google Scholar
4. Venzke, S., Dover, R.B. van, Philips, Julia M., Gyorgy, E.M., Siegrist, T., Chen, C-H., Werder, D., Fleming, R.M., Felder, R.J., Coleman, E. and Opila, R., J. Mater. Res. Vol. 11 (1996).10.1557/JMR.1996.0153Google Scholar
5. Sawatzky, G.A., Woude, F. van Der and Morrish, A.H., Phys. Rev. 187, 747 (1969).10.1103/PhysRev.187.747Google Scholar
6. Persoons, R.M., Grave, E. De, Bakker, P.M.A. de and Vanderberghe, R.E., Phys. Rev. B 47, 5894 (1992).10.1103/PhysRevB.47.5894Google Scholar
7. Erickson, D.S. and Mason, T.O., J. Solid State Chem. 59, 42 (1985).10.1016/0022-4596(85)90348-2Google Scholar
8. Sawatzky, G.A., Woude, F. van Der and Morrish, A.H., J. Appl. Phys. 39, 1204 (1968).10.1063/1.1656224Google Scholar
9. Takahashi, Masatake and Fine, Morris E., J. Appl. Phys. 43, 4205 (1972).10.1063/1.1660897Google Scholar
10. Na, J.G., Lee, T.D. and Park, S.J., J. Mater. Sci. Lett. 12, 961 (1993).10.1007/BF00455632Google Scholar
11. Suzuki, Y., Hu, G., Dover, R.B. van and Cava, R.J., J. Magn. Magn. Mater. 191, 1 (1999).10.1016/S0304-8853(98)00364-3Google Scholar
12. Hu, G., Nath, T.K., Eom, C.B. and Suzuki, Y. (unpublished).Google Scholar
13. Paul, A. and Basu, S., Trans. J. Brit. Ceram. Soc. 73, 167 (1974).Google Scholar
14. Hauet, A., Teillet, J., Hannoyer, B. and Lenglet, M., Phys. Status Solidi A 108 257 (1987).10.1002/pssa.2211030129Google Scholar
15. Grimblot, J., Bonnelle, J.P. and Beaufils, J.P., J. Electron Spectr. Related Phen. 8, 437 (1976).10.1016/0368-2048(76)80030-8Google Scholar
16. Chuang, T.J., Brundle, C.R. and Rice, D.W., Surf. Sci. 59, 413 (1976).10.1016/0039-6028(76)90026-1Google Scholar
17. Dale, Darren, Hu, G., Balbarin, Vincent and suzuki, Y., Appl. Phys. Lett. 74, 3026 (1999).10.1063/1.124053Google Scholar