Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T23:11:34.778Z Has data issue: false hasContentIssue false

Strain Effects on Optical Gain Properties of GaN/AlGaN Quantum Well Lasers

Published online by Cambridge University Press:  10 February 2011

M. Suzuki
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–4 Hikaridai, Seikacho, Sourakugun, Kyoto 619–02, Japan
T. Uenoyama
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co., Ltd., 3–4 Hikaridai, Seikacho, Sourakugun, Kyoto 619–02, Japan
Get access

Abstract

Subband structures and optical gains of the strained wurtzite GaN/AlGaN quantum well lasers are theoretically investigated on the basis of k.p theory. First-principles calculations are used for deriving the unknown physical parameters, such as deformation potentials. Neither compressive nor tensile biaxial strains are so effective on the reduction of the threshold carrier density. It is also found that the uniaxial strain in the c-plane is one of the preferable approaches for the efficient improvement of the laser performance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T. and Senoh, M., Appl. Phys. Lett. 54 (1994) 1687.Google Scholar
2. Akasaki, I., Amano, H., Itoh, K., Koide, N. and Manabe, K., Inst. Phys. Conf. Ser. 129 (1992) 851.Google Scholar
3. Nakamura, S., Jpn. J. Appl. Phys. 35 (1996) L74.Google Scholar
4. Kamiyama, S., Ohnaka, K., Suzuki, M. and Uenoyama, T., Jpn. J. Appl. Phys. 34 (1995) L821.Google Scholar
5. Uenoyama, T. and Suzuki, M., Appl. Phys. Lett. 67 (1995) 2527.Google Scholar
6. Suzuki, M., Uenoyama, T. and Yanase, A., Phys. Rev. B 52 (1995) 8132.Google Scholar
7. Suzuki, M. and Uenoyama, T., Jpn. J. Appl. Phys. 35 (1996) 543.Google Scholar
8. Wimmer, E., Krakauer, H., Weinert, M. and Freeman, A. J., Phys. Rev. B 24 (1981) 864.Google Scholar
9. Gunnarson, O. and Lundquvist, B. I., Phys. Rev. B 13 (1976) 4274.Google Scholar
10. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15 (1969) 327.Google Scholar
11. Yim, W. M., Stofko, E. J., Zanzucchi, P. J., Pankove, J. I., Ettenberg, M. and Gilbert, S. L., J. Appl. Phys. 44 (1973) 292.Google Scholar
12. Luttinger, J. M. and Kohn, W., Phys. Rev. 97 (1955) 869.Google Scholar
13. Kane, E. O., J. Phys. Chem. Solids 1 (1957) 249.Google Scholar
14. Monemar, B., Phys. Rev. B 10 (1974) 676.Google Scholar
15. Dingle, R., Sell, D. D., Stokowski, S. E. and Ilegems, M., Phys. Rev. B 4 (1971) 1211.Google Scholar
16. Barker, A. S. and Ilegems, M., Phys. Rev. B 7 (1973) 743.Google Scholar
17. Bir, G. L. and Pikus, G. E., Symmetry and Strain-Induced Effects in Semiconductors, (Wiley, New York, 1974) pp.329.Google Scholar
18. Sheleg, A. U. and Savastenko, V. A., Izv. Akad. Nauk SSSR, Neorg. Mater., 15 (1979) 1598.Google Scholar
19. Suzuki, M. and Uenoyama, T. (unpublished).Google Scholar
20. Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Rockett, A., Morkoc, H., Lambrecht, W. R. L. and Segall, B., Appl. Phys. Lett. 65 (1994) 610.Google Scholar