Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T13:23:43.776Z Has data issue: false hasContentIssue false

Step-Edge Barriers on GaAs(001)

Published online by Cambridge University Press:  21 February 2011

P. Šmilauer
Affiliation:
HLRZ, KFA Jülich, 52425 Jülich, Germany, p.smilauer@kfa-juelich.de, and IRC Semiconductors, Imperial College, London SW7 2BZ, UK
D.D. Vvedensky
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK, d.vvedensky@ic.ac.uk
Get access

Abstract

We investigate growth of GaAs(001) using kinetic Monte Carlo simulations of a very simple atomistic solid-on-solid model. The key features of this model are a short-range incorporation process of freshly deposited atoms and additional activation barriers to interlayer transport. Both are required to obtain close agreement between measured electron-diffraction intensities and simulated surface step densities during growth and post-growth equilibration on vicinal surfaces. This model is used to study long-time evolution of the surface morphology. Large pyramid-like features develop during growth on a singular surface which coarsen in time while maintaining an approximately constant slope. Growth on a vicinal surface is also found to be unstable. Simulated surface morphologies are compared with recent work using atomic-force microscopy. Finally, we show how a suitably modified version of this model helps to explain the recently observed phenomenon of re-entrant layer-by-layer chemical-beam etching of a singular GaAs(001) surface. The central features responsible for this behavior are the site selectivity of the etching process combined with step-edge barriers to interlayer adatom migration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Molecular beam epitaxy, edited by Cho, A. (American Institute of Physics, New York, 1994).Google Scholar
2 Tsang, W.T., Kapre, R., and Sciortino, P.F., Appl. Phys. Lett. 62, 2084 (1993); W.T. Tsang, T.H. Chiu, and R.M. Kapre, Appl. Phys. Lett. 63, 3500 (1993).Google Scholar
3 Gilmer, G.H. and Bennema, P., J. Appl. Phys. 43, 1347 (1972); J.D. Weeks and G.H. Gilmer, Adv. Chem. Phys. 40, 157 (1979).Google Scholar
4 Clarke, S. and Vvedensky, D.D., Phys. Rev. Lett. 58, 2235 (1987).Google Scholar
5 See Madhukar, A. and Ghaisas, S.V., CRC Critical Reviews in Solid State and Materials Science 14, 1(1988) for a review.Google Scholar
6 Neave, J.H., Dobson, P.J., Joyce, B.A., and Zhang, J., Appl. Phys. Lett. 47, 100 (1985).Google Scholar
7 Zhang, J., Neave, J.H., Dobson, P.J., and Joyce, B.A., Appl. Phys. A 42, 317 (1987).Google Scholar
8 Dudarev, S.L., Vvedensky, D.D., and Whelan, M.J., Phys. Rev. B 50, 14525 (1994).Google Scholar
9 Shitara, T., Vvedensky, D.D., Wilby, M.R., Zhang, J., Neave, J.H., and Joyce, B.A., Phys. Rev. B 46, 6815 (1992); Phys. Rev. 46, 6825 (1992).Google Scholar
10 Myers-Beaghton, A.K. and Vvedensky, D.D., Phys. Rev. B 42, 5544 (1990); S. Stoyanov, Appl. Phys. A 50, 349 (1990).Google Scholar
11 Neave, J.H., Joyce, B.A., Dobson, P.J., and Norton, N., Appl. Phys. A 31, 1 (1983); F.J. Grun-thaner, A. Madhukar, T.C. Lee, and R. Fernandez, J. Vac. Sci. Technol. B 3, 1317 (1985); A. Yoshinaga, M. Fahy, S. Dosanjh, J. Zhang, J.H. Neave, and B.A. Joyce, Surf. Sci. 264, LI57 (1992).Google Scholar
12 Vvedensky, D.D. and Clarke, S., Surf. Sci. 225, 373 (1990).Google Scholar
13 Šmilauer, P. and Vvedensky, D.D., Phys. Rev. B 48, 17603 (1993).Google Scholar
14 Ehrlich, G. and Hudda, F.G., J. Chem. Phys. 44, 1039 (1966).Google Scholar
15 Schwoebel, R.L. and Shipsey, E.J., J. Appl. Phys. 37, 3682 (1966); R.L. Schwoebel, J. Appl. Phys. 40, 614 (1969).Google Scholar
16 Bales, S.G. and Zangwill, A., Phys. Rev. B 41, 5500 (1990).Google Scholar
17 Peng, L.-M. and Whelan, M.J., Proc. R. Soc. London 435, 257 (1991).Google Scholar
18 Zandvliet, H.T.W., Elswijk, H.B., Dijkkamp, D., van Loenen, E.J., and Dieleman, J., J. Appl. Phys. 70, 2614 (1991); T. Shitara, J. Zhang, J.H. Neave, and B.A. Joyce, J. Appl. Phys. 71, 4299(1992).Google Scholar
19 Villain, J., J. Phys. I (France) 1, 19 (1991).Google Scholar
20 Smith, G.W., Pidduck, A.J., Whitehouse, C.R., Glasper, J.L., and Spowart, J., J. Cryst. Growth 127, 966(1993).Google Scholar
21 Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J.L., Sander, L.M., and Orr, B.G., Phys. Rev. Lett. 72, 116(1994).Google Scholar
22 Orme, C., Johnson, M.D., Sudijono, J.L., Leung, K.T., and Orr, B.G., Appl. Phys. Lett. 64, 860 (1994).Google Scholar
23 Šmilauer, P. and Vvedensky, D.D., Phys. Rev. B 52, 14263 (1995).Google Scholar
24 Krug, J. and Schimschak, M., J. Phys. I (France) 5, 1065 (1995).Google Scholar
25 Kaneko, T., Šmilauer, P., Joyce, B.A., Kawamura, T., and Vvedensky, D.D., Phys. Rev. Lett. 74, 3289 (1995).Google Scholar
26 Kunkel, R., Poelsema, B., Verheij, L.K., and Comsa, G., Phys. Rev. Lett. 65, 733 (1990).Google Scholar
27 Snyder, C. W., Sudijono, J., Lam, C.-H., Johnson, M.D., and Orr, B.G., Phys. Rev. B 50, 18194 (1994); R.J. Pechman, X.-S. Wang, and J.H. Weaver, Phys. Rev. B 51, 10929 (1995) [the latter paper deals with GaAs(110) surface].Google Scholar
28 Michely, T., Land, T., Littmark, U., and Comsa, G., Surf. Sci. 272, 204 (1992).Google Scholar
29 Possible mechanisms for the annihilation of vacancies formed in lower layers and the role of adatom and vacancy migration are discussed in Michely, T., Land, T., Littmark, U., and Comsa, G., Surf. Sci. 272, 204 (1992), and P. Šmilauer, M.R. Wilby, and D.D. Vvedensky, Surf. Sci. Lett. 291, L733 (1993).Google Scholar
30 Bott, M., Michely, T., and Comsa, G., Surf. Sci. 272, 161 (1992); K. Thürmer, R. Koch, M. Weber, and K.H. Rieder, Phys. Rev. Lett. 75, 1767 (1995); J.A. Stroscio, D.T. Pierce, M.D. Stiles, A. Zangwill, and L.M. Sander, Phys. Rev. Lett. 75, 4246 (1995).Google Scholar