Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T01:02:29.376Z Has data issue: false hasContentIssue false

Standing Wave Reflectivity in Photonic Structures Using a Scattering Type Optical Near-Field Optical Microscope

Published online by Cambridge University Press:  01 February 2011

A. Bruyant
Affiliation:
Laboratoire de Nanotechnologie et Instrumentation Optique, UTT - CNRS (FRE 2671), 10010 TROYES cedex, France
S. Aubert
Affiliation:
Laboratoire de Nanotechnologie et Instrumentation Optique, UTT - CNRS (FRE 2671), 10010 TROYES cedex, France
G. Lérondel
Affiliation:
Laboratoire de Nanotechnologie et Instrumentation Optique, UTT - CNRS (FRE 2671), 10010 TROYES cedex, France
S. Blaize
Affiliation:
Laboratoire de Nanotechnologie et Instrumentation Optique, UTT - CNRS (FRE 2671), 10010 TROYES cedex, France
R. Bachelot
Affiliation:
Laboratoire de Nanotechnologie et Instrumentation Optique, UTT - CNRS (FRE 2671), 10010 TROYES cedex, France
P. Royer
Affiliation:
Laboratoire de Nanotechnologie et Instrumentation Optique, UTT - CNRS (FRE 2671), 10010 TROYES cedex, France
V. Minier
Affiliation:
Groupement d'Electromagnétisme Expérimental et d'Optoélectronique, 38240 Meylan, France
Get access

Abstract

A method for measuring locally the normalised reflectivity spectrum in waveguiding photonic structures is presented. The latter is obtained by imaging the standing wave pattern upstream of the structure with a scattering type Scanning Near-field Optical Scanning Microscope (s-SNOM) and normalised with a simple Fourier analysis. Two kinds of sample are investigated. The first one is a corrugated integrated waveguide, the second is a fiber Bragg grating. The s-SNOM technique applied to waveguiding structures is first introduced with the case of a straight waveguide.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gates, J. C., Mills, J. D. and Brocklesby, W.S. Appl. Phys. Lett. 83 1890 (2003)Google Scholar
2 Flück, E., Hammer, M., Otter, A. M., Korterik, J. P., Balistreri, M. L. M., Kuipers, L. and Van Hulst, N. F. J. Opt. Soc. Am. B 21 1384 (2003).Google Scholar
3 Vander Rhodes, G. H., Goldberg, B. B., Ünlü, M. S., Chu, S. T., Pan, W., Kaneko, T., and Kokobun, Y., B. E. Little Appl. Phys. Lett. 75 2368 (1999)Google Scholar
4 Phillips, P. L., Knight, J. C., Mangan, B. J., and Russel, P. St. J., Charlton, M. D. B. and Parker, G. J. J. of Appl. Phys 85 6337 (1999)Google Scholar
5 Blaize, S., Aubert, S., Bruyant, A., Bachelot, R., Lerondel, G., Royer, P., Broquin, J. E., Minier, V. Journal Of Microscopy 209 155 (2002)Google Scholar
6 Aubert, S., Bruyant, A., Blaize, S., Bachelot, R., Lerondel, G., Hudlet, S., and Royer, P. J. Opt. Soc. Am. B 20 2117 (2003)Google Scholar
7 Flück, E., Otter, A. M., Korterik, J. P., Balistreri, M. L. M., Kuipers, L. and Van Hulst, N. F., Journal Of Microscopy 202 104 (2000)Google Scholar
8 Blaize, S., Bastard, L., Cassagnetes, C., Vitrant, G. and J-E Broquin Proc. of the SPIE Opto2002, 4640 (2002)Google Scholar