Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-11T19:42:29.874Z Has data issue: false hasContentIssue false

Stacked Layers of C-Induced Ge Quantum Dots

Published online by Cambridge University Press:  10 February 2011

O. G. Schmidt
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraß;e 1, 70569 Stuttgart, Germany
K. Eberl
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraß;e 1, 70569 Stuttgart, Germany
S. Schieker
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraß;e 1, 70569 Stuttgart, Germany
N. Y. Jin-Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany and Seestraße 92, 70174 Stuttgart, Germany
F. Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany and Seestraße 92, 70174 Stuttgart, Germany
J. Auerswald
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany and Seestraße 92, 70174 Stuttgart, Germany
P. Lamperter
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany and Seestraße 92, 70174 Stuttgart, Germany
Get access

Abstract

Fifty layers of carbon-induced germanium dots, separated by 9.6 nm Si, are stacked by solid source molecular beam epitaxy. Each dot layer consists of 0.2 monolayers of pre-deposited carbon and 2.4 monolayers of post-grown Ge. These carbon-induced germanium dots are only 10 to 15 nm in diameter and 1 to 2 nm in height. Vertical alignment due to penetrating strain fields of underlying dot layers is not observed. Unlike to an identical structure without the pre-growth of carbon, a variety of advantageous aspects such as strain compensation, strongly enhanced no-phonon photoluminescence at a wavelength of around 1.3 μm and the possibility of effective waveguiding make this stack of C-induced Ge islands an attractive structure for Si based optoelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Abstreiter, G., Schittenhelm, P., Engel, C., Silveira, E., Zrenner, A., Meertens, D., and Jäger, W., Semicond. Sci. Technol. 11, 1521 (1996).Google Scholar
2 Sunamura, H., Usami, N., Shiraki, Y., and Fukatsu, S., Appl. Phys. Lett. 66, 3024 (1995).Google Scholar
3 Bimberg, D., et al., Phys. Stat. Sol. (b) 194, 159 (1996).Google Scholar
4 Eberl, K., Physics World 10, 47 (1997).Google Scholar
5 Shiryaev, S. Yu., Jensen, F., Hansen, J. Lundsgaard, Petersen, J. Wulff, and Larsen, A. Nylandsted, Phys. Rev. Lett. 78, 503 (1997).Google Scholar
6 Xie, Y. H., Samavedam, S.B., Langgo, T.A., and Fitzgerald, E.A., Thin Solid Films 1998 (in press).Google Scholar
7 Usami, N., Mine, T., Fukatsu, S., and Shiraki, Y., Appl. Phys. Lett. 64, 539 (1994).Google Scholar
8 Vescan, L., Thin Solid Films 294, 284 (1997).Google Scholar
9 Kamins, T. I. and Williams, R. Stanley, Appl. Phys. Lett. 71, 1201 (1997).Google Scholar
10 Usami, N., Issiki, F., Nayak, D. K., Shiraki, Y., and Fukatsu, F., Appl. Phys. Lett. 68, 2340 (1996).Google Scholar
11 Brunner, K., Winter, W., and Eberl, K., Appl. Phys. Lett. 69, 1279 (1996).Google Scholar
12 Schmidt, O. G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Appl. Phys.Lett. 71, 2240, (1997).Google Scholar
13 Schmidt, O. G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Thin Solid Films 1998 (in press).Google Scholar
14 Vescan, L., Jäger, W., Dieker, C., Schmidt, K., Hartmann, A., and Lüth, H., Mat. Res. Symp. Proc. 263, 23 (1992).Google Scholar
15 Schittenhelm, P., Abstreiter, G., Darhuber, A., Bauer, G., Kosogov, A., and Werner, P., Thin Solid Films 294, 291 (1997).Google Scholar
16 Solomon, G., Trezza, J., Marshall, A. and Harris, J., Phys. Rev. Lett., 76, 952 (1996).Google Scholar
17 Zundel, M. K., Specht, P., Eberl, K., Phillipp, N.Y. Jin, and Phillipp, F., Appl. Phys. Lett. 71, 2972, (1997).Google Scholar
18 Schmidt, O. G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Appl. Phys. Lett. 1998 (in press).Google Scholar
19 EberI, K., Iyer, S.S., Zollner, S., Tsang, J.C., and Legoues, F.K., Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
20 Eberl, K., Iyer, S. S., and Legoues, F. K., Appl. Phys. Lett. 64, 739 (1994).Google Scholar
21 Eberl, K., Schmidt, O. G., Schieker, S., Jin-Phillipp, N.Y., and Phillipp, F., Solid-State Electronics (1998) (in press).Google Scholar
22M. Vouk, A. and Lightowlers, E. C., J. Phys. C. 8, 3695 (1975).Google Scholar