Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-08T07:15:25.772Z Has data issue: false hasContentIssue false

Stabilization and transformation of the phases in nanostructured irconia prepared by wet chemical synthesis route

Published online by Cambridge University Press:  10 February 2011

T. D. Xiaol
Affiliation:
Inframat Corporation, 20 Washington Avenue, Suite 106, North Haven, CT 06473, USA.
X. Bokhimi
Affiliation:
Institute of Physics, National University of Mexico (UNAM) A.P. 20-364, 01000, Mexico
A. Garcia-Ruiz
Affiliation:
UPIICSA-National Polytechnical Institute (IPN), Resina, Mexico, MEXICO.
A. Morales
Affiliation:
Institute of Physics, National University of Mexico (UNAM) A.P. 20-364, 01000, Mexico
D. M. Wang
Affiliation:
Inframat Corporation, 20 Washington Avenue, Suite 106, North Haven, CT 06473, USA.
H. Chen
Affiliation:
Precision Manufacturing Center, PMC, University of Connecticut, Storrs, CT 06269, USA.
P. R. Struttl
Affiliation:
Inframat Corporation, 20 Washington Avenue, Suite 106, North Haven, CT 06473, USA.
Get access

Abstract

Nanostructured yttrium stabilized zirconia powders with yttria concentrations between 0.0 and 10.0 mol % were prepared via an aqueous chemical synthesis route. This synthesis involved the spray atomization of the aqueous solution mixture of zirconyl chloride and yttrium chloride into a reaction vessel that contained a diluted ammonium hydroxide, followed by ultrasonication, separation and heat treatment. These powders were characterized using SEM, TEM, XRD, and chemical analysis. The crystalline structure was refined using the Rietveld technique. At temperatures below 200 °C, the powders were amorphous solid solutions with an structure independent of yttria concentration, where yttrium atoms occupied the zirconium positions in the zirconyl group, e.g., (Zr4(1-x) Y4x(OH)8(OH2)16)(8-4x)+. Annealing the sample at 400 °C, the amorphous phases crystallized into monoclinic, tetragonal or cubic nanocrystalline zirconia, depending on yttria concentration, where the non-doped samples had a mixture of monoclinic and tetragonal phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Claussen, N., in "Science and Technology of Zirconia 1" edited by Claussen, N., Ruhle, M. and Heuer, A. H. (American Ceramic Society, Columbus, Ohio, 1984).Google Scholar
[2]. Garvie, R. C., Hannink, R. H., Pascoe, R. T., Nature 258, 703 (1975).Google Scholar
[3]. Evans, A. G., Marshall, D. B., and Burlingame, N. H., in "Science and Technology Columbus, Ohio, 1981) p. 202.Google Scholar
[4]. Busby, T. S., Conney, J. I. E., and Eccles, J. “Zircon Refractories”, Glass Technology 3, 190 (1962).Google Scholar
[5]. Chirino, A. M. and Sproule, R.T., Ceram. Soc. Bull 59, 604 (1980).Google Scholar
[6]. Dadwal, S. P. S., Solid State Ionic 70/71, 83 (1994).Google Scholar
[7Yuan, ]. Q.-M., Tan, J.-Q., and Jin, Z.-G., J. Am. Ceram. Soc. 69, 265 (1986).Google Scholar
[8]. “Advances in Zirconia Science and Technology”, edited by McRiani, S. and Palmonaria, C., Elsevier Applied Science Publisher, (New York and London, 1989).Google Scholar
[9]. See examples in Nanostruct Mater. 1, 1992.Google Scholar
[10]. Skandan, G., Hahn, H., Kear, B.H., Roddy, M., and Cannon, W.R., Mat Res. Soc. Symp. 351, 207 (1994).Google Scholar
[11]. Xiao, T.D., Strutt, P.R., Kear, B.H., Chen, H., and Wang, D.M., US Patent application filed 11/18/96Google Scholar
[12]. Thompson, P., Cox, D.E., and Hasting, J.B., J. Appl. Crystallogr. 20, 79 (1987).Google Scholar
[13]. Young, R. A. and Desai, P., Arch. Nauki Mat. 10, 71 (1989).Google Scholar
[14]. Mamott, G. T., Barnes, P., Tarling, S.E., Jones, S.L., and Norman, C.J., J. Mater. Sci. 26, 4054 (1991).Google Scholar
[15]. Clearfield, A., and Vaughan, P. A., Acta Cryst. 9, 555 (1956).Google Scholar
[16]. Darab, J. G., Uehler, M. F., Linehan, J. C., and Matson, D. W., Mat. Res. Soc. Symp. Proc. 346, 499 (1994).Google Scholar
[17]. Lundgren, G., Svensk. Kem. Tidskr. 71, 200 (1959).Google Scholar
[18]. Bokhimi, X., Morales, A., Novaro, O., Portilla, M., Lopez, T., Tzompanzi, F., and Gomez, R., J. Solid State Chem., in press, 1997.Google Scholar
[19]. Turrillas, X., Barnes, P., Tarling, S. E., Jones, S. L., Norman, C. J., and Ritter, C., J. Mater. Sci. Lett. 12, 223 (1993).Google Scholar
[20]. Clearfield, A., J. Mater. Res. 5, 161 (1990).Google Scholar
[21]. Clearfield, A., Inorg. Chem. 3, 146 (1964).Google Scholar