Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-01T03:29:09.018Z Has data issue: false hasContentIssue false

Sructural evolution of GaN during initial stage MOCVD growth

Published online by Cambridge University Press:  03 September 2012

Chong Cook Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea
Jung Ho Je
Affiliation:
Department of Materials Science and Engineering and Center for Electronic Materials Research, Kwangju Institute of Science and Technology, Kwangju, Korea
Min-Su Yi
Affiliation:
Department of Materials Science and Engineering and Center for Electronic Materials Research, Kwangju Institute of Science and Technology, Kwangju, Korea
Do Young Noh
Affiliation:
Department of Materials Science and Engineering and Center for Electronic Materials Research, Kwangju Institute of Science and Technology, Kwangju, Korea
Get access

Abstract

The structural evolution of GaN films during the initial growth process of metalorganic chemical vapor deposition (MOCVD) - low temperature nucleation layer growth, annealing, and high temperature epitaxial growth - was investigated in a synchrotron x-ray scattering experiment. The nucleation layer grown at 560°C that was predominantly cubic GaN consisted of tensile-strained aligned domains and relaxed misaligned domains. The hexagonal GaN, transformed from the cubic GaN during annealing to 1100°C, showed disordered stacking. The atomic layer spacing decreased as the fraction of the hexagonal domains increased. Subsequent growth of epitaxial GaN at 1100°C resulted in the formation of ordered hexagonal GaN domains with rather broad mosaicity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoc, H. and Mohammad, S. N., Science 267, 51 (1995)Google Scholar
2. Nakamura, S., Jpn. J. Appl. Phys. 30, L1705 (1991).Google Scholar
3. Amano, H., Sawaki, N., , Akasaki, and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986)Google Scholar
4. Keller, S., Keller, B. P., Wu, Y. –F., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 68, 1525 (1996).Google Scholar
5. Wu, X. H., Kapolnek, D., Tarsa, E. J., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 68, 1371 (1996).Google Scholar
6. Munkholm, A., Thompson, C., Foster, C. M., Eastman, J. A., Auciello, O., Stephenson, G. B., Fini, P., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 72, 2972 (1998)Google Scholar
7. Noh, D. Y., Hwu, Y., Je, J. H., Hong, M., and Mannaerts, J. P., Appl. Phys. Lett. 68, 1528 (1996)Google Scholar
8. Grandjean, N., Massies, J., Vennegues, P., Laugt, M., and Leroux, M., Appl. Phys. Lett. 70, 643 (1997)Google Scholar
9. Kurobe, T., Sekiguchi, Y., Suda, J., Yoshimoto, M., and Matsunami, H., Appl. Phys. Lett. 73, 2305 (1998)Google Scholar
10. Wu, X. H., Fini, P., Keller, S., Tarsa, E. J., Heying, B., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Jpn. J. Appl. Phys. 35, L1648 (1996).Google Scholar
11. Yang, B., Trampert, A., Jenichen, B., Brandt, O., and Ploog, K. H., Appl. Phys. Lett. 73, 3869 (1998).Google Scholar