Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-20T03:50:55.011Z Has data issue: false hasContentIssue false

Sputtered and Reactively Grown Epitaxial GdAIO3 Films as Buffer Layers for C-Oriented YBa2Cu3O7-δ Films on R-Sapphire

Published online by Cambridge University Press:  15 February 2011

S. Senz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
H. Sieber
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
N. D. Zakharov
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
M. Lorenz
Affiliation:
Universität Leipzig, Institut für Experimentalphysik II, Linnéstr. 5, D-04103 Leipzig, Germany
H. Hochmuth
Affiliation:
Universität Leipzig, Institut für Experimentalphysik II, Linnéstr. 5, D-04103 Leipzig, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany
Get access

Abstract

Thin films of the orthorhombic perovskite GdAlO3 were grown on R-plane sapphire single crystals. Two different film growth methods were used, viz. (i) a chemical reaction of a Gd-O plasma with the sapphire crystals, and (ii) the reactive radio frequency (r.f.) sputtering of a GdAlO3 target. Subsequently, YBa2Cu3O7-δ (YBCO) films were deposited onto the GdAlO3 buffer by pulsed laser deposition (PLD). The GdAlO3 and YBCO films were investigated by Xray diffraction pole figure analysis and transmission electron microscopy (TEM), including highresolution transmission electron microscopy of cross sections. Independent of the deposition method the GdAlO3 films grew according to the nearly equivalent orientation relationships The GdAlO3 grains are additionally tilted by angles up to ± 3° around the sapphire [11.1] axis. On top of these buffer layers the YBCO films grew with c-orientation and with an in-plane rotation of 45°. YBCO films of 200 nm thickness on GdAlO3 buffer layers with a thickness of 10 to 20 nm showed a Tc > 87 K and a jc(77 K) > 3×106 A/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Witanachchi, S. et al., Appl. Phys. Lett. 55 (1989) 295.Google Scholar
[2] Berezin, A. B., Yuan, C. W. and de Lozanne, A. L., Appl. Phys. Lett. 57 (1990) 90.Google Scholar
[3] Denhoff, M. W. and McCaffrey, J. P., J. Appl. Phys. 70 (1991) 3986.Google Scholar
[4] Char, K., Newman, N., Garrison, S. M., Barton, R. W., Taber, R. C., Laderman, S. S. and Jacowitz, R. D., Appl. Phys. Lett. 57 (1990) 409.Google Scholar
[5] Siegel, M., Wang, F., Smithey, R., Kaufmann, U., Linker, G., Meyer, O. and Geerk, J., Proceedings of ICAM 91, Strasbourg, France, 27–31 May 1991, Amsterdam: North-Holland 1992, p. 701.Google Scholar
[6] Gao, J., Klopman, B. B. G., Aarnink, W. A. M., Reitsma, A. E., Gerritsma, G. J. and Rogalla, H., J. Appl. Phys. 71 (1992) 2333.Google Scholar
[7] Wang, F. and Wördenweber, R., Thin Solid Films 227 (1993) 200.Google Scholar
[8] Phillips, J. M., Applied Physics Reviews, in J. Appl. Phys., in pressGoogle Scholar
[9] Hesse, D., Berthold, L., Haefke, H., Lang, H. P., Sum, R. and Güntherodt, H.-J., Physica C 202 (1992) 277.Google Scholar
[10] JCPDF-ICDD database for X-ray diffraction, entry # 30–15Google Scholar
[11] Lorenz, M., Hochmuth, H., Börner, H., Natusch, D. and Kreher, K., Mat. Res. Soc. Symp. Proc. Vol.341 (1994) 189.Google Scholar
[12] Hochmuth, H. and Lorenz, M., Physica C 220 (1994) 209.Google Scholar
[13] Strecker, A., Salzberger, U. and Mayer, J., Prakt. Metallogr. 30 (1993) 482.Google Scholar
[14] Tricker, D. M. and Stobbs, W. M., Phil. Mag. A, 71 (1995) 1051.Google Scholar
[15] Hesse, D., Senz, S., Scholz, R., Werner, P. and Heydenreich, J., Interf. Sci. 2 (1994) 221.Google Scholar