Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-23T08:47:46.587Z Has data issue: false hasContentIssue false

Spray Drying FunctionalizedMesostructured Colloids

Published online by Cambridge University Press:  10 February 2011

Peter Alberius
Affiliation:
YKI, Institute for Surface Chemistry Box 5607, SE-114 86 Stockholm, Sweden
Nina Andersson
Affiliation:
YKI, Institute for Surface Chemistry Box 5607, SE-114 86 Stockholm, Sweden
Lennart Bergström
Affiliation:
YKI, Institute for Surface Chemistry Box 5607, SE-114 86 Stockholm, Sweden
Get access

Abstract

An industrially viable production method is a prerequisite for the commercialization of templated mesostructured materials, e.g. as carriers of various functionalities in coatings, in the coatings of ink jet paper and liquid chromatography. A small pilot plant was constructed for the continuous production of well ordered mesostructured materials (>10g/h) that can easily be scaled to an industrial process. The silica colloids have a well controlled internal mesostructure and are spherical with a mean diameter of 1-5μm. The mesoscopic pores in the calcined materials are accessible to relatively large molecules; up to 25 % (by weight) of the cationic dye Janus Green B could be adsorbed from an aqueous solution. We have also demonstrated how optically functional silica colloids could be prepared in a one-pot synthesis by introducing different dyes into the precursor solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S., Nature 359, 710712 (1992)Google Scholar
2. Attard, G.S., Glyde, J.C. and Goltner, S.G., Nature 378, 366368 (1995)Google Scholar
3. Bagshaw, S.A., Prouzet, E. and Pinnavaia, T.J., Science 269, 12421244 (1995)Google Scholar
4. Templin, M., Franck, A., Chesne, A. Du, Leist, H., Zhang, Y., Ulrich, R.,Schadler, V. and Wiesner, U., Science 278, 17951798 (1997)Google Scholar
5. Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F. and Stucky, G.D., Science 279, 548552 (1998)Google Scholar
6. Bruinsma, P.J., Kim, A.Y., Liu, J. and Baskaran, S. Chemistry of Materials 9, 25072512 (1997)Google Scholar
7. Lu, Y., Fan, H., Stump, A., Ward, T.L., Rieker, T. and Brinker, C.J., Nature (London) 398, 223226 (1999)Google Scholar
8. Bore, M.T., Rathod, S.B., Ward, T.L. and Datye, A.K., Langmuir 19, 256264 (2003)Google Scholar
9. Alexandridis, P., Zhou, D., and Khan, A., Langmuir 12, 26902700 (1996)Google Scholar
10. Alberius, P.C.A., Frindell, K.L., Hayward, R.C., Kramer, E.J., Stucky, G.D. and Chmelka, B.F., Chemistry of Materials 14, 32843294 (2002)Google Scholar
11. Lu, Y.F., Ganguli, R., Drewien, C.A., Anderson, M.T., Brinker, C.J., Gong, W.L., Guo, Y.X., Soyez, H., Dunn, B., Huang, M.H. and Zink, J.I., Nature 389, 364368 (1997)Google Scholar
12. Klotz, M., Ayral, A., Guizard, C., and Cot, L., Journal of Materials Chemistry 10, 663669 (2000)Google Scholar
13. Honma, I., Zhou, H.S., Kundu, D., and Endo, A., Advanced Materials (Weinheim, Germany) 12, 15291533 (2000)Google Scholar
14. Besson, S., Gacoin, T., Ricolleau, C., Jacquiod, C., and Boilot, J.P., Journal of Materials Chemistry 13, 404409 (2003)Google Scholar
15. Yang, P., Wirnsberger, G., Huang, H.C., Cordero, S.R., McGehee, M.D., Scott, B., Deng, T., Whitesides, G.M., Chmelka, B.F., Buratto, S.K. and Stucky, G.D., Science (Washington, D.C.) 287, 465467 (2000)Google Scholar