Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-06T13:03:45.920Z Has data issue: false hasContentIssue false

Spontaneous Crystalline Multilayer Formation in Ni Implanted Al at 100 K

Published online by Cambridge University Press:  17 March 2011

Alexandre Cuenat
Affiliation:
Institut de Génie atomique, Département de Physique, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
Aicha Hessler-Wyser
Affiliation:
Institut de Génie atomique, Département de Physique, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
Max Döbeli
Affiliation:
Ion Beam Physics, Paul Scherrer Institut, c/o IPP HPK H32, ETH Hoenggerberg, 8093 Zuerich, Switzerland
Rolf Gotthardt
Affiliation:
Institut de Génie atomique, Département de Physique, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
Get access

Abstract

The microstructure evolution of aluminum implanted with nickel at 5 MeV and at 100 K to a local concentration of 25 at. % is described. Transmission Electron Microscopy (TEM) observa- tions and Rutherford Backscattering Spectrometry (RBS) experiments are conducted to deter-mine the Ni profile and the microstructure of the implanted samples. For lower Ni concentration, it has been previously observed that Al0.75Ni0.25 amorphous precipitates are formed together with a high dislocation density. When the Ni concentration reaches 25 at. %, a new crystalline multi-layered microstructure is observed: the TEM observations reveal the presence of well-defined crystalline layers separated by sharp interfaces. To our knowledge, it is the first time that such a structure is observed without further annealing of the implanted sample. A series of mechanisms describing the formation of the crystalline multilayer are briefly discussed. It is argued that its formation is the result of a recrystallization front produced by the exothermal amorphous to crystal transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Picraux, S.T., Follstaedt, D.M., Baeri, P., Campisano, S.U., Foti, G., Rimini, E., Rad. Eff. Def. 49, 75 (1980).Google Scholar
2. Thomé, L., Pons, F., Pivin, J.C., Cohen, C., Nucl. Instrum. Meth. B 15, 269 (1986).Google Scholar
3. Schäublin, R. and Gotthardt, R., Phil. Mag. A, 74, 593 (1996).Google Scholar
4. Hessler, A., PhD. Thesis EPFL, N°1966 (1999).Google Scholar
5. Cuenat, A., PhD. Thesis EPFL, N°2168 (2000).Google Scholar
6. Follstaedt, D., in Processing of Metals and Alloys, edited by Cahn, J.W. (Wyley/VCH, Weinheim, 1991).Google Scholar
7. Nastasi, M., Williams, J.M., Kenik, E.A., Mayer, J.W., Nucl. Instrum. Meth. B 19, 543 (1987).Google Scholar
8. Ahmed, M. and Potter, D., Acta Met. 33, 2221 (1985).Google Scholar
9. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
10. Hessler-Wyser, A., Cuenat, A., Döbeli, M. and Gotthardt, R., in preparation.Google Scholar
11. Cuenat, A., Schäublin, R., Hessler-Wyser, A. and Gotthardt, R., Ultramicroscopy 83, 179 (2000).Google Scholar
12. Desre, P. and Yavari, A., Phys. Rev. Lett. 64, 1533 (1990).Google Scholar