Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T00:38:24.906Z Has data issue: false hasContentIssue false

Spectroscopic Ellipsometry and Band Structure of Si1–yCy Alloys Grown Pseudomorphically on Si (001)

Published online by Cambridge University Press:  15 February 2011

Stefan Zollner
Affiliation:
Department of Physics and Astronomy and Ames Laboratory (US-DOE), Iowa State University, Ames, IA 50011-3020
Craig M. Herzinger
Affiliation:
Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
John A. Woollam
Affiliation:
Center for Microelectronic and Optical Materials Research and Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, and J. A. Woollam Co., Inc., 650 J Street, Suite 39, Lincoln, NE 68508
Subramanian S. Lyer
Affiliation:
International Business Machines Corporation, Research Division, T. J. Watson Research Center, P. o. Box 218, Yorktown Heights, NY 10598
Adrian P. Powell
Affiliation:
International Business Machines Corporation, Research Division, T. J. Watson Research Center, P. o. Box 218, Yorktown Heights, NY 10598
Karl Eberl
Affiliation:
International Business Machines Corporation, Research Division, T. J. Watson Research Center, P. o. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

We have measured the dielectric functions of three Si1−yCy, alloys layers (y ≤1.4%) grown pseudomorphically on Si (001) substrates using molecular beam epitaxy at low temperatures. From the numerical derivatives of the measured spectra, we determine the critical point energies E0 and E1 as a function of y (y ≤ 1.4%) using a comparison with analytical line shapes and analyze these energies in terms of the expected shifts and splittings due to negative hydrostatic pressure, shear stress, and alloying. Our data agree well with the calculated shifts for El, but the E0 energies are lower than expected. We discuss our results in comparison with recent tight-binding molecular dynamics simulations by Demkov and Sankey (Phys. Rev. B 48, 2207, 1993) prediciting a total breakdown of the virtual-crystal approximation for such alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bean, J. C., Science 230, 127 (1985).Google Scholar
2 Meyerson, B. S., Sci. Aim. 270 (3), 62 (1994).Google Scholar
3 Iyer, S. S., Patton, G. L., Stork, J. M. C., Meyerson, B. S., and Harame, D. L., IEEE Transactions on Electron Devices 36, 2043 (1989).Google Scholar
4 Parmenter, R. H., Phys. Rev. 97, 587 (1955).Google Scholar
5 Chen, A.-B. and Sher, A., Phys. Rev. B 22, 3886 (1980).Google Scholar
6 Zollner, S., Grein, C. H., and Cardona, M., in Ultrafast Laser Probe Phenomena in Bulk and Microstructure Semiconductors IV, edited by Alfano, R. R., Proc. SPIE 1677, 75 (1992).Google Scholar
7 Renucci, M. A., Renucci, J. B., and Cardona, M., in Proceedings of the Second International Conference on Light Scattering in Solids, edited by Balkanski, M., (Flammarion, Paris, 1971), p. 326.Google Scholar
8 Weber, J. and Alonso, M. I., Phys. Rev. B 40, 5683 (1989).Google Scholar
9 Gironcoli, S. de, Baroni, S., and Gianozzi, P. in 20th International Conference on the Physics of Semiconductors, edited by Anastassakis, E. A. and Joannopoulos, J. D., (World Scientific, Singapore, 1990), vol. 2, p. 877.Google Scholar
10 Eberl, K., Iyer, S. S., Zollner, S., Tsang, J. C., and LeGoues, F. K., Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
11 Iyer, S. S., Eberl, K., Goorsky, M. S., LeGoues, F. K., Tsang, J. C., and Cardone, F., Appl. Phys. Lett. 60, 356 (1992).Google Scholar
12 Kissinger, W., Weidner, M., Osten, H. J., and Eichler, M., Appl. Phys. Lett. 65, 3356 (1994).Google Scholar
13 Powell, A. R., Eberl, K., LeGoues, F. K., Ek, B. A., and Iyer, S. S., J. Vac. Sci. Technol. B 11, 1064 (1993).Google Scholar
14 Tsang, J. C., Eberl, K., Zollner, S., Iyer, S. S., Appl. Phys. Lett. 61, 961 (1992).Google Scholar
15 Zollner, S. and Collins, R. T., (unpublished).Google Scholar
16 Demkov, A. A. and Sankey, O. F., Phys. Rev. B 48, 2207 (1993).Google Scholar
17 Loeclielt, G. H., Meléndez-Lira, M. A., and Menéndez, J., Bull. Am. Phys. Soc. 40, 220 (1995). (This conference paper was cancelled by the authors.)Google Scholar
18 Cardona, M., Modulation Spectroscopy, (Academic, New York, 1969).Google Scholar
19 Azzamn, R. M. A. and Bashara, N. M., Ellipsometry and Polarized Light, (North-Holland, Amsterdam, 1977).Google Scholar
20 Humlíček, J., Garriga, M., Alonso, M. I., and Cardona, M., J. Appl. Phys. 65, 2827 (1989).Google Scholar
21 Etchegoin, P., Kircher, J., and Cardona, M., Phys. Rev. B 47, 10292 (1993).Google Scholar
22 J. A. Woollam Co., Inc, 650 J Street, Suite 39, Lincoln, NE 68508.Google Scholar
23 Lange, R., Zollner, S., Jensen, K. G., Myers, K. M. (unpublished).Google Scholar
24 Zollner, S., (unpublished).Google Scholar
25 Pollak, F. H. and Rubloff, G. W., Phys. Rev. Lett. 29, 789 (1972).Google Scholar