Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T07:11:10.108Z Has data issue: false hasContentIssue false

Spectrally Resolved Fill Factor Measurements on a-Si:H Based Solar Cell Structures

Published online by Cambridge University Press:  10 February 2011

Michael Wagner
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Dimitrios Peros
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Stephan Guse
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Markus Böhm
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Get access

Abstract

This work presents essential differences in the fill factors (FF) of pin and nip solar cell structures based on hydrogenated amorphous silicon (a-Si:H). The nomenclature “pin’ (‘nip’ respectively) determines the deposition sequence of the single layers. Fill factor measurements are carried out with illumination through p- and n-layers at different wavelengths. The use of laser light provides a wide range of illumination levels and photo current densities of up to 14mA/cm2. The spectrally resolved FF measurements indicate an incorporation of dopants in the i-layer depending on the layer deposited first. Nip and pin structures generally show opposite FF dispersion when illuminated through the same layer. However, due to the slight n-conductivity of intrinsic a-Si:H material, a weak boron incorporation leads to a net charge compensation in the ilayer. In contrast to other investigations we do not find a significant deviation in the open circuit voltages of the pin and nip devices as long as the deposition parameters of the single layers are identical.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guha, S., Yang, J., Banerjee, A., Glatfelter, T., Hoffman, K., Ovshinsky, S. R., Izu, M., Ovshinsky, H. C. and Deng, X., Mat. Res. Soc. Symp. Proc. 336, 645 (1994).Google Scholar
2. Kishi, Y., Inoue, H., Tanaka, H., Kouzuma, S., Murata, K., Sakai, S., Nishikuni, M., Wakisaka, K., Shibuya, H., Nishiwaki, H., Takeoka, A. and Kuwano, Y., Proc. 22nd IEEE Photovoltaic Spec. Conf, 1213, New York (1991).Google Scholar
3. Fujikake, S., Tabuchi, K., Yoshida, T., Ichikawa, Y. and Sakai, H., Mat. Res. Soc. Symp. Proc. 377, 609 (1995).Google Scholar
4. Kusian, W., Furlan, J., Conte, G., Smole, F., Topic, M. and Popovic, P., Proc. 12th E.C. Photovoltaic Solar Energy Conf, 1249, Amsterdam (1994).Google Scholar
5. Thornton, J. A., in Semiconductor Materials and Process Technology Handbook, edited by McGuire, G. E. (Noyes Publications, New Jersey, 1988), p. 329.Google Scholar
6. Uchida, Y., in Amorphous Semiconductor Technologies & Devices. JARECT Vol.16, edited by Hamakawa, Y. (OHMSHA Ltd. and North-Holland Publishing Co., 1984), p. 180.Google Scholar
7. Terzini, E., Cavaliere, G., Conte, G., Mastrogiacomo, A., Nobile, G. and Rubino, A., Proc. 12th E.C. Photovoltaic Solar Energy Conf, 1276, Amsterdam (1994).Google Scholar
8. Spear, W. E. and LeComber, P. G., in Topics in Applied Physics, Vol.55, Hydrogenated Amorphous Silicon I, edited by Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, 1984), p. 90.Google Scholar
9. Kusian, W., PhD thesis, Universität der Bundeswehr München (Germany), 1987.Google Scholar
10. Madan, A. and Shaw, M. P., in The Physics and Applications of Amorphous Semiconductors, Academic Press (1988), p. 237.Google Scholar