Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T04:10:38.038Z Has data issue: false hasContentIssue false

Spectrally Resolved Cathodoluminescence (SRCL) of Hydrothermal ZnO crystals

Published online by Cambridge University Press:  15 February 2011

J. Mass
Affiliation:
Física de la Materia Condensada, ETSII, 47011 Valladolid, Spain Dpto. Matemàticas y Física, UniNorte, Km 5 Barranquilla, Colombia
M. Avella
Affiliation:
Física de la Materia Condensada, ETSII, 47011 Valladolid, Spain
J. Jiménez
Affiliation:
Física de la Materia Condensada, ETSII, 47011 Valladolid, Spain
M. Callahan
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA 01731, USA
E. Grant
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA 01731, USA
K. Rakes
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA 01731, USA
D. Bliss
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Hanscom AFB, MA 01731, USA
Buguo Wang
Affiliation:
Solid State Scientific Corporation, Hollis, NH 03049, USA
Get access

Abstract

Large hydrothermal ZnO crystals were grown using 3N NaOH, 1N KOH and 0.5N Li2CO3 mineralizer. The crystals were studied by cathodoluminescence (CL), showing a good crystalline quality. Different growth regions were identified by CL imaging. These regions were characterized by their corresponding luminescence spectra, showing that the incorporation of impurities and non radiative recombination centers depend on the growth sector. The surface is shown to introduce band tailing modifying the high energy part of the spectrum. The main spectral signatures of each sector are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Look, D.C., Mater.Sci.Eng. B80, 383(2000)Google Scholar
2 Look, D.C., Reynolds, D.C., Sizelove, J.R., Jones, R.L., Litton, C.W., Cantwell, G., Harsch, W.C.; Sol. St. Commun. 105, 399 (1998)Google Scholar
3 Kane, M.H., Varatharajan, R., Feng, Z.C., Kandoor, S., Nause, J., Summers, C., Ferguson, I.T.; Mat.Res.Soc.Symp.Proc. Vol 799, Z8.6 (2004)Google Scholar
4 Ohshima, E., Ogino, H., Niikura, I., Maeda, K., Sato, M., Ito, M., Fukuda, T.; J. Cryst. Growth (to be published 2005)Google Scholar
5 Bulakh, B., Khomenkova, L., Kushnirenko, V., Markevich, I.; Eur. Phys. J. Appl. Phys. 27, 305 (2004)Google Scholar
6 Mass, J., Avella, M., J. Jiménez; (unpublished).Google Scholar
7 Sherriff, R.E., Reynolds, D.C., Look, D.C., Jogai, B., Hoelscher, J.E., Collins, T.C., Cantwell, G., Harsch, W.C.; J.Appl. Phys. 88, 3454 (2000)Google Scholar
8 Coleman, V.A., Tan, H.H., Jagadish, C., Kucheyev, S.O., Phillips, M.R., Zou, J.; Mater. Res. Soc. Symp. Proc. Vol. 289, B8.7 (2005)Google Scholar
9 Phillips, M.R., Wagner, M., Gelhausen, O., Coleman, V., Brady, J.B., Jagadish, C., Malguth, E., Hoffmann, A., Goldys, E.M., Rusell, J.J.; E.MRS Fall meeting, Symp. F, (Strasbourg, France, 2004)Google Scholar
10 Halliburton, L.E., Wang, L., Bai, L., Garces, N.Y., Giles, N.C., Callahan, M.J., Wang, B.; J.Appl. Phys. 96, 7168 (2004)Google Scholar
11 Tomzig, E., Helbig, R.; J. Luminescence 14, 403 (1970)Google Scholar
12 Kolb, E.D., Laudise, R.A.; J. Am. Ceram. Soc. 49, 302 (1966)Google Scholar
13 Hur, T.B., Jeen, G.S., Hwang, Y.H., Kim, H.K.; J. Appl. Phys. 94, 5787 (2003)Google Scholar
14 Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Strasburg, M., Dworzak, M., Haboeck, U., Rodina, A. V.; Phys. Stat. Sol. (b) 241, 231 (2004)Google Scholar
15 Kohan, A.F., Ceder, G., Morgan, D., Van de Walle, C.G.; Phys. Rev.B 61, 15019 (2000)Google Scholar
16 Sekiguchi, T., Miyashita, S., Obara, K., Shishido, T., Sakagami, N.; J.Cryst. Growth 214-215, 72 (2000)Google Scholar