Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-05T20:07:30.622Z Has data issue: false hasContentIssue false

Spatial Inhomogeneities in Rapidly Thermal-Processed GaAs Wafer

Published online by Cambridge University Press:  25 February 2011

A. Usami
Affiliation:
Nagoya Institute of Technology, Gokiso–cho, showa–ku, Nagoya 466, Japan
A. Kitagawa
Affiliation:
Nagoya Institute of Technology, Gokiso–cho, showa–ku, Nagoya 466, Japan
T. Wada
Affiliation:
Nagoya Institute of Technology, Gokiso–cho, showa–ku, Nagoya 466, Japan
Get access

Abstract

The spatial distributions of the midgap defect (EL2) concentration in semi-insulating liquid-encapsulated Czochralski GaAs wafers have been characterized by the contactless measurement of the optically injected carrier using reflectance microwave probe (RMP) method. The four-fold symmetrical distribution of EL2 in the (100) plane is observed in the 2 inch diameter GaAs wafer after rapid thermal processing(RTP). The deep level distribution in the RTP wafer corresponds to the crystallographic slip generation pattern obtained from x-ray topography. The correlation between the pattern of the redistributed EL2 concentration and the slip generation in the RTP wafer is suggested that the EL2 is produced by the large thermal stress during RTP. Furthermore, the distributions of EL2 center measured by the RMP method are compared with the dislocation patterns in undoped and In-doped GaAs wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Holmes, D. E., Chen, R. T., and Yang, J., Appl. Phys. Lett. 42, 419 (1983).Google Scholar
2. Lagowski, J., Lin, D.G., Aoyama, T., and Gatos, H.C., Appl.Phys.Lett. 44, 336 (1984).Google Scholar
3. Dobrilla, P. and Blakemore, J. S., J. Appl. Phys. 60, 169 (1986).Google Scholar
4. Holmes, D. E. and Chen, R. T., J. Appl. Phys. 55, 3588 (1984).Google Scholar
5. Gray, M.L., Sargent, L., Blakemore, J. S., Parsey, J. M. Jr., and Clemans, J. E., J. Appl. Phys. 63, 5689 (1988).Google Scholar
6. Wang, F-C. and Bujatti, M., IEEE Electron Device Lett. EDL–5, 188 (1984).Google Scholar
7. Day, D.J., Trudeau, M., McAlister, S.P., and Hurd, C.M., Appl.Phys.Lett. 52, 2034 (1988).CrossRefGoogle Scholar
8. Kohzu, H., Kuzuhara, M., and Takayama, Y., J. Appl. Phys. 54, 4998 (1983).Google Scholar
9. Kitagawa, A., Usami, A., Wada, T., Tokuda, Y., and Kano, H., J.Appl.Phys. 61, 1215 (1987).Google Scholar
10. Katayama, M., Usami, A., Wada, T., and Tokuda, Y., J.Appl.Phys. 62, 528 (1987).Google Scholar
11. Blunt, R.T., Lamb, M.S.M., and Szweda, R., Appl.Phys.Lett. 47, 304 (1985).Google Scholar
12. Kitagawa, A., Usami, A., Wada, T., Tokuda, Y., and Kano, H., J.Appl.Phys. 65, 606 (1989).Google Scholar
13. Usami, A., Masuoka, H., Wada, T., Murai, K., and Umehara, M., Semi-Insulating III-V Materials (Ohmsha, Tokyo, 1986), p157.Google Scholar
14. Usami, A., Kitagawa, A., and Wada, T., Appl. Phys. Lett. 54, 831 (1989).Google Scholar
15. Martin, G. M., Appl. Phys. Lett. 39, 747 (1981).Google Scholar
16. Silverberg, P., Omling, P., and Samuelson, L., Appl.Phys.Lett. 52, 1689 (1988).Google Scholar
17. Blakemore, J.S., Semi-Insulating III-V Materials (Ohmsha, Tokyo, 1986), p389.Google Scholar
18. Bentini, G., Correra, L., and Donolato, C., J. Appl. Phys. 56, 2922 (1984).Google Scholar
19. Dainippon Screen Engineering of America Inc. Santa Office, c/o Prism Technologies Inc. 2620 Augustine Dr. #145 Santa Clara, CA 95045 U.S.AGoogle Scholar