Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-29T00:40:25.108Z Has data issue: false hasContentIssue false

Solidification Microporosity in Equiaxed Multi-Component Nickel Aluminide

Published online by Cambridge University Press:  26 February 2011

C.J. Cheng
Affiliation:
Dept. of Materials Science and Engineering, University of Cincinnati, OH 45221–0012
J.A. Sekhar
Affiliation:
Dept. of Materials Science and Engineering, University of Cincinnati, OH 45221–0012
Get access

Abstract

Porosity formation during solidification in equiaxed microstructure of multicomponent nickel aluminide IC396M is examined. Two types of porosities are identified and related to the other scales of microstructure that evolve during solidification. A correlation is established between the relevent processing parameters and the microstructure variables.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sikka, V.K.: Mater. Manufact. Proc., 1989, vol. 4(1), pp. 124Google Scholar
2. Liu, C.T. and Sikka, V.K., J. Metals, 19(1986).Google Scholar
3. Sikka, V. K. in Space Age Metals Technology, edited by Froes, F.H. and Ray Cull, A., (SAMPE 2, Dayton, Ohio 1988)pp. 6275Google Scholar
4. Ho, C.T., Cheng, C.J. and Sekhar, J.A., to appear in Metall. Trans., January, 1991.Google Scholar
5. Campell, J.: AFS Cast Metals Res. J., vol. 5, no. 1, pp. 18, (1969)Google Scholar
6. Kubo, K. and Pehlke, R.D.: Metall. Trans. B, 1985, vol. 16B, pp. 35966.Google Scholar
7. Kubo, K. and Pehlke, R.D.: AFS Trans., 1986, vol.94, pp. 75356.Google Scholar
8. Abbas, M., St. Pierre, G.R., and Mobley, C.E.: AFS Trans. 1986, vol. 94, pp. 4756Google Scholar
9. Chang, E. and Chou, J.C.: AFS Trans., 1987, vol. 95, pp749754 Google Scholar
10. Pellini, W.S.: AFS Trans., 1953, vol. 61, pp. 6180 Google Scholar
11. Davies, V.de L.: AFS Cast Met. Res. J., 1975, vol. 11, pp. 3344 Google Scholar
12. Moosbrugger, J.C. and Berry, J.T.: AFS Trans., 1986, vol. 94, pp.37380.Google Scholar
13. Ohnaka, I.: E-MRS, les edition de physique, France, 1986, pp. 211–23Google Scholar
14. Niyama, E., Uchida, T., Morikawa, M., and Saito, S.: AFS Int. Cast Met. J., June 1981, vol. 6 (2), pp. 1622.Google Scholar
15. Niyama, E., Uchida, T., Morikawa, M., and Saito, S.: 49th Int. Foundry Congress, Chicago, IL, April 1982, paper No. 10.Google Scholar
16. Piwonka, T.S. and Flemings, M.C.: Trans. TMS-AIME, 1966, vol. 236, pp. 115765.Google Scholar
17. Flemings, M.C., Poirer, D.R., Barone, R.V., and Brody, H.D.: J. Iron Steel Inst., 208: 371 (1970).Google Scholar
18. Flemings, M.C., Solidification Processing, McGraw-Hill, Inc., 1974, pp.148.Google Scholar
19. Bower, T.F., Brody, H.D., and Flemings, M.C.: Trans. AIME, 1966, vol. 236, pp.624634.Google Scholar
20. Kattamis, T.Z., Flemings, M.C.: Trans. AIME, 1965, vol.233, pp.992 Google Scholar