Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T14:33:40.752Z Has data issue: false hasContentIssue false

Solid State Synthesis of Double Molybdates of Potassium and Lanthnones and their Conductivity Behaviour

Published online by Cambridge University Press:  28 February 2011

Suba K.
Affiliation:
Department of Chemistry, Indian Institute of Technology, Madras 600 036, India
Udupa M.R
Affiliation:
Department of Chemistry, Indian Institute of Technology, Madras 600 036, India
Syamasundara Rao Y.
Affiliation:
Department of Physics, Indian Institute of Technology, Madras 600 036, India
Get access

Abstract

Double molybdates, KLn(MoO4)2 and K5Ln(MoO4)4 have been synthesised utilising the solid state reactions of KIO3 Ln203 and MoO3 (Ln=La,Gd,Dy) in appropriate mole ratios, employing thermal analysis techniques. The solid phases have been characterised by IR, XRD studies and magnetic measurements. The d.c. electrical conductivity values of the two molybdates measured in the temperature range 373–623K are found to increase with rise in temperature. This observation together with the calculated jump activation enthalpies and the supposed ‘layered’ type structure with the loosely held K+ ion between the layers support the ionic conductivity mechanism in these samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kaminskii, A.A., Maier, A.A., Nikonova, N.S., M.V.Provotorov and Sarkisov, C.E., Phys. Stat. Solidi(a), 12,K73 (1972).Google Scholar
2. Peterson, G.E. and Bridonbaugh, P.M., J. Appl. Phys. Letters, 4, 1973 (1964).Google Scholar
3. Maier, A.A., Provotorov, M.V. and Balashov, V.A., Russ. Chem. Rev., 42(10), 81 (1973).Google Scholar
4. Goodenough, J.B., in Solid Electrolytes, edited by Hagenmuller, P. and Gool, W. Van (Academic Press, New York, 1978), p.393.Google Scholar
5. Alpen, U. Von, Schonherr, E., Schulz, H. and Talat, G.H., Electrochim. Acta, 22, 805 (1977).Google Scholar
6. Yao, Y.F.Y. and Kurmer, J.T., J. Inorg. Nucl. Chem., 29, 2453 (1967).Google Scholar
7. Goodenough, J.B., Hong, H.Y-P. and Kafalas, J.A., Mater. Res. Bull., 11, 203 (1976).Google Scholar
8. Klevtsov, P.V. and Kozeeva, L.P., Sov. Phys. Crystallogr., 21, 170 (1976).Google Scholar
9. Efremov, V.A. and Trunov, V.K., Soy. Phys. Crystallogr., 19, 613 (1975).Google Scholar
10. Furuichi, R., Ishii, T., Yamanako, Z. and Shimokawabe, M., Thernochim. Acta, 51, 245 (1981).CrossRefGoogle Scholar
11. Greenwood, N.N. and Earnshaw, A., in Chemistry of the elements, (Pergamon Press, New York, 1989), p.1443.Google Scholar
12. Petrov, K.I., Voronskaya, G.N., Shakhno, I.V. and Savel'eva, M.V. Izv. Akad. Nauk SSSR, Neorg. Mater., 6, 515 (1970).Google Scholar
13. Mokhosoev, M.V., Get'man, E.I., Alekseev, F.P. and Loboda, S.N., Izv. Akad. Nauk SSSR, Neorg. Mater., 6, 1857 (1970).Google Scholar
14. Hanuza, J. and Fomitsev, V.V., J. Mol. Str., 66, 1 (1980).CrossRefGoogle Scholar
15. Delmas, C., Fouassier, C. and Hagenmuller, P., Physica, 99B, 81 (1980).Google Scholar