Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-23T11:23:09.438Z Has data issue: false hasContentIssue false

Solid State Property - Bonding Electron Density – Volume Plasmon Energy Scaling Relationships: Novel AEM Technique for In Situ Diagnostics of Material Properties at the Nanoscale

Published online by Cambridge University Press:  01 February 2011

Vladimir P. Oleshko
Affiliation:
University of Virginia, Department of Materials Science & Engineering, Charlottesville, VA 22904–4745, USA
James M. Howe
Affiliation:
University of Virginia, Department of Materials Science & Engineering, Charlottesville, VA 22904–4745, USA
Get access

Abstract

Quantized high-frequency (∼1016 Hz) correlated longitudinal electron excitations (plasmons) generated in the energy-loss range 0–50 eV by fast electrons passing through any solid enable one to probe various states of matter. Their energy, Ep, is directly related to the density of valence electrons, thus allowing determination of solid-state properties that are governed by ground-state densities. Universal features and scaling in relations between Ep and the cohesive energy per atomic volume, bonding electron density and elastic constants have been established. The resulting correlations follow the universal binding energy relationship, thus providing new insights into the fundamental nature of structure-property relationships. They allow direct in situ determination of local material properties in an analytical electron microscope, as illustrated by examples utilizing Al- and Ti-based structural alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brydson, R., Electron Energy Loss Spectroscopy. (BIOS Sci. Publ., Oxford, 2001), pp. 5968.Google Scholar
[2] Williams, D. B. and Edington, J.W., J. Microsc. 108 (2), 113145 (1976).Google Scholar
[3] Oleshko, V., Amkreutz, M. and Overhof, H., Phys. Rev. B. 67, 115409 17 (2003).Google Scholar
[4] Egri, I., Solid Stat. Comm. 44, 563566 (1982).Google Scholar
[5] Pines, D., Rev Mod. Phys. 28 (3), 184198 (1956).Google Scholar
[6] Mothioux, M., Soutric, F. and Serin, V., Carbon 35, 16601664 (1997).Google Scholar
[7] Gilman, J. J., Phil. Mag. 79 (4), 643654 (1999).Google Scholar
[8] Oleshko, V. P., Murayama, M. and Howe, J. M., Microsc. Microanal. 8 (4), 350364 (2002).Google Scholar
[9] Laffont, L., Monthioux, M. and Serin, V., Carbon 40, 767780 (2002).Google Scholar
[10] Daniels, H. R., Brydson, R., Brown, A. and Rand, B., Ultramicroscopy 96, 547558 (2003).Google Scholar
[11] Batson, P. E., Ultramicroscopy 96 239249 (2003).Google Scholar
[12] Colliex, C., in Adv. Opt. Electron Microsc., edited by Cosslett, V. E. and Barer, R. (Academic Press, London, 9, 1984), pp. 65177.Google Scholar
[13] Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., J. Phys. Rev. 29 (6), 29632969 (1984).Google Scholar
[14] Banerjea, A. and Smith, J. R., J. Phys. Rev. 37 (12), 66326645 (1988).Google Scholar
[15] Miedema, A. R. and Boom, R., Z. Metallkunde 69 (3), 183190 (1978).Google Scholar
[16] Moruzzi, V. L., Janak, J. F. and Williams, A. R., Calculated Electronic Properties of Metals (Pergamon, NY, 1978), pp. 2329.Google Scholar
[17] Oleshko, V. P. and Howe, J. M., Microsc. Microanal. 9 (Suppl 2), 918919 CD (2003).Google Scholar
[18] Handbook of The Physico-Chemical Properties of Elements, edited by G. V. Samsonov, (IFI/ Plenum, New York, 1968), p. 397.Google Scholar
[19] Mondolfo, L. F., Al Alloys: Structure&Properties (Butterworths, London. UK, 1979), p. 81.Google Scholar
[20] Smithells Metals Reference Book, edited by E. A. Brandes and G. B. Brook, (Butterworths, Oxford, 1998), pp. 15–1–15–4.Google Scholar
[21] Shih, D. S., Robertson, I. M. and Birnbaum, H. K., Acta Metall. 36 (1), 111124 (1988).Google Scholar