Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-17T11:35:57.366Z Has data issue: false hasContentIssue false

Solid Phase Epitaxial Regrowth of Microcrystalline Si Films on a (100) Si Substrate

Published online by Cambridge University Press:  26 February 2011

S. Roorda
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407 1098 SJ Amsterdam, the Netherlands.
S. Saito
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407 1098 SJ Amsterdam, the Netherlands.
W. C. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407 1098 SJ Amsterdam, the Netherlands.
Get access

Abstract

Microcrystalline Si, as produced by explosive crystallization of an amorphous Si layer on (100) Si, shows a two-stage annealing behaviour. Initially, solid phase epitaxial regrowth occurs very rapidly at temperatures at, or above 800°C. After a few seconds, the regrowth rate slows down to the value typical for alignment of poly-Si. Solid phase epitaxial regrowth of microcrystalline Si is suggested to be strongly dependent on grain size and structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
2 Narayan, J. and White, C.W., Appl. Phys. Lett. 44, 35 (1983).Google Scholar
3 Sinke, W. and Saris, F.W., Phys. Rev. Lett. 53, 2121 (1984).Google Scholar
4 Sinke, W., Saris, F.W., Barbour, J.C. and Mayer, J.W., J. Mat. Res. 1, 155 (1986).CrossRefGoogle Scholar
5 Sinke, W., unpublished.Google Scholar
6 Veprek, S., Iqbal, Z. and Sarott, F.A., Phil. Mag. B, 45, 137 (1982).CrossRefGoogle Scholar
7 Veprek, S., Iqbal, Z., Oswald, H.R., Sarott, F.A., Wagner, J.J. and Webb, A.P., Solid State Commun. 39, 509 (1981).Google Scholar
8 Tsaur, B.Y. and Hung, L.S., Appl. Phys. Lett. 37, 648 (1980).CrossRefGoogle Scholar
9 Ghannam, M.Y. and Dutton, R.W., Appl. Phys. Lett. 51, 611 (1987)Google Scholar
10 Natsuaki, N., Tamura, T., Miyazaki, T. and Yanagi, Y., Proc. 15thConf. Solid State Dev. and Mat. p 47 (Tokyo,1983).Google Scholar
11 Olson, G.L., Kokorowski, S.A., Roth, J.A. and Hess, L.D., in Laser-Solid Interactions and Transient Thermal Porcessing of Materials, edited by Narayan, J., Brown, W.L. and Lemons, R.A. (Mater. Res. Soc. Proc. Vol.13, Pittsburgh, PA 1983) p 141.Google Scholar
12 Johnson, W.S. and Gibbons, J.F., Projected Range Statistics in Semiconductors, distr. by Stanford University Book Store (1969).Google Scholar
13 Cullis, A.G., Webber, H.C. and Bailey, P., J. Phys. E. Sci. Instr. 12, 688 (1979).Google Scholar
14 Doolittle, L.R., Nucl. Instr. and Meth. B9, 344 (1984).Google Scholar
15 Wada, Y. and Nishimatsu, S., J. Electroch. Soc. 125, 1499 (1978).Google Scholar
16 Roth, J.A. and Olson, G.L., in Beam-Solid Interactions and Transient Processing, edited by Thompson, M.O., Picraux, S.T. and Williams, J.S. (Mater. Res. Soc. Proc. Vol.74, Pittsburgh, PA 1987) p 319, (1987)Google Scholar