Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T00:50:03.666Z Has data issue: false hasContentIssue false

Sol-Gel AL2O3 Coatings on SiC Fiber

Published online by Cambridge University Press:  25 February 2011

Youming Xiao
Affiliation:
Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060
Beng Jit Tan
Affiliation:
Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3060
Steven L. Suib*
Affiliation:
Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3060
Francis S. Galasso
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
*
*To whom correspondence should be addressed.
Get access

Abstract

Coating of SiC (BP-SIGMA) fibers with alumina by a sol-gel process did not cause degradation even after heating to 1000°C in air for 24 h. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and scanning electron microscopy (SEM ) methods were used to study the coating fiber interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DiCarlo, J. and Williams, W., Ceram. Eng. Proc., 1980, 1, 671.Google Scholar
2. Hwan, L., “Preparation and Characterization of Ceramic Composite and Coatings by Chemical Vapor Deposition and Chemical Vapor Infiltration”, Ph.D. Dissertation, University of Conn., Storrs, CT (1990).Google Scholar
3. Roy, R., Solid State Ionics, 1989,32/33, 322.Google Scholar
4. Colomban, Ph., Ceram. International, 1989,15, 2350.Google Scholar
5. Cranmer, D. C., J. Non-Cryst. Solids, 1989, 68(2), 415419.Google Scholar
6. Brinker, C. J., J. Non-Cryst. Solids, 1988, 100, 3150.Google Scholar
7. Livage, J., Sanchez, C., Henry, M., Doeuff, S., Solid State Ionics, 1989, 32/33, 633638.CrossRefGoogle Scholar
8. Griesmar, P., Papin, G. P., Sanchez, C., Livage, J., Chem. Mater., 1991, 3, 335339.Google Scholar
9. Hurd, A. J. and Brinker, C. J., Classification Physics Abstracts, Sandia National Laboratories, Albuquerque, NM 87175.Google Scholar
10. Yi, G. and Sayer, M., Ceram. Bull., 1991,70(7), 11731179.Google Scholar
11. Sowman, H. G., Ceram. Bull., 1988, 67(12), 19111916.Google Scholar
12. Yoldas, B. E., Ceram. Bull., 1975, 54, (3).Google Scholar
13. Marr, S. and Ko, F., “Thermomechanical Properties of Tungsten Core SiC Monofilament”, 21st International SAMPE Technical Conference, 879891, Sept. 25-28, (1989).Google Scholar
14. Searle, R., “X-Ray Diffraction Standards and Structures of Transition and Beta Aluminas”, M.S. Thesis, Alfred University, Alfred, N.Y.(1978).Google Scholar
15. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Swarthmore, PA., (1979).Google Scholar
16. Pignatel, G. U. and Queirol, G., Radiation Effects,1983, 79, 291303.Google Scholar
17. Frederick, B. G., Apai, G., and Rhoein, T. N., J. Am. Chem. Soc., 1987, 109, (16),4797–803Google Scholar
18. Galasso, F., “Advanced Fibers and Composites”, Gordon and Breach, N.Y. 1833 (1989).Google Scholar
19. Lippens, B. C. and Boer, J. H. De., Acta Cryst., 1964, 17,13121321.Google Scholar
20. Pierre, A. C., J. Am. Ceram. Soc., 1987, 70 (1) 1, 2832.Google Scholar
21. Spitler, C. A. and Pollack, S. S., J. Catal., 1981, 69, 241.Google Scholar
22. Tan, B. J., Hwan, L., Suib, S. L., Galasso, F. S., J. Vac. Sci. Technol., 1991, A9(4), 21962203.CrossRefGoogle Scholar