Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T01:33:58.659Z Has data issue: false hasContentIssue false

SOI Structures Formed Using Line-Source Electron Beam Recrystallization

Published online by Cambridge University Press:  28 February 2011

Cameron A. Moore
Affiliation:
Applied Electron Corporation, Albuquerque, New Mexico, 87113.
Jack D. Meyer
Affiliation:
Applied Electron Corporation, Albuquerque, New Mexico, 87113.
Jay T. Fukumoto
Affiliation:
Applied Electron Corporation, Albuquerque, New Mexico, 87113.
Nicholas J. Szluk
Affiliation:
Applied Electron Corporation, Albuquerque, New Mexico, 87113.
Lance R. Thompson
Affiliation:
Colorado State University, Department of Electrical Engineering, Fort Collins, Colorado, 80523.
James A. Knapp
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, 87185.
George J. Collins
Affiliation:
Colorado State University, Department of Electrical Engineering, Fort Collins, Colorado, 80523.
Samuel Berkman
Affiliation:
David Sarnoff Research Center, Princeton, New Jersey, 08543.
Get access

Abstract

Recrystallization of silicon-on-insulator (SOI) films using a line-source electron beam is described. This unique heat source can continuously emit several kilowatts of - 5 keV electrons into a beam 150 mm in length and - 2.5 mm in width, an exposure area which allows processing of 100 mm substrates in a single pass. An attractive aspect of this beam is the ability to control the beam profile, which in turn allows one to influence the thermal gradients present during recrystallization. Using a tightly focussed beam to recrystallize the SOI layer results in a film whose physical properties are generally attributed to films grown with a high thermal gradient at the solidifying liquid-solid interface (highly branched subboundaries with a maximum spacing of - 20 microns and several degrees of angular mismatch.) By reducing the gradient at the growth interface it is possible to achieve unbranched sub-boundaries with over 70 micron spacing and less than 0.5 degrees of out-of-plane tilt misalignment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pfeiffer, L., West, K.W., Joy, D.C., Gibson, J.M., and Gelman, A.E. in Semiconductor-On-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Proc. 53, Pittsburgh, PA 1986) pp. 2938.Google Scholar
2 Geis, M.W., Chen, C.K., and Smith, H.I., J. Appl. Phys. 60, 1152 (1986).CrossRefGoogle Scholar
3 Cullen, G.W., IEEE SOS/SOI Workshop, Durango, Colorado, 1987.Google Scholar
4 Dutartre, D., Bensahel, D., and Haond, M. in Beam-Solid Interactions and Transient Processes, edited by Thompson, M.O., Picraux, S.T., and Williams, J.S. (Mater. Res. Soc. Proc. 74, Pittsburgh, PA 1987) pp. 561566.Google Scholar
5 Geis, M.W., Smith, H.I., Tsaur, B-Y., Fan, J.C.C., Silversmith, D.J., and Mountain, R.W., J. Electrochem. Soc. 129, 2812 (1982).CrossRefGoogle Scholar
6 Geis, M.W., Smith, H.I., Silversmith, D.J., Mountain, R.W., and Thompson, C.V., J. Electrochem. Soc. 130, 1178 (1983).CrossRefGoogle Scholar
7 Pfeiffer, L., Gelman, A.E., Jackson, K.A., and West, K.W. in Beam-Solid Interactions and Transient Processes, edited by Thompson, M.O., Picraux, S.T., and Williams, J.S. (Mater. Res. Soc. Proc. 74, Pittsburgh, PA 1987) pp. 543553.Google Scholar
8 Jackson, K.A., in Growth and Perfection of Crystals, edited by Doremus, R.H., Roberts, B.W., and Turnbull, D., (Wiley, New York, 1958), p. 319.Google Scholar
9 Im, J.S., Thompson, C.V., and Tomita, H. in Beam-Solid Interactions and Transient Processes, edited by Thompson, M.O., Picraux, S.T., and Williams, J.S. (Mater. Res. Soc. Proc. 74, Pittsburgh, PA 1987) pp. 555560; Appl. Phys. Lett. 51, 685 (1987).Google Scholar
10 Im, J.S., Thompson, C.V., and Tomita, H., Appl. Phys. Lett. 51, 685 (1987).CrossRefGoogle Scholar
11 Dutartre, D., Haond, M., and Bensahel, D. in Semiconductor-On-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Proc. 53., Pittsburgh, PA 1986) pp. 8994.Google Scholar
12 Im, J.S., private communication.Google Scholar
13 Rocca, J.J., Meyer, J.D., Farrell, M.R., and Collins, G.J., J. Appl. Phys. 56, 790 (1984).CrossRefGoogle Scholar
14 Moore, C.A., Rocca, J.J., Johnson, T., and Collins, G.J., Appl. Phys. Lett. 43, 290 (1983).CrossRefGoogle Scholar
15 Saitoh, S., Higuchi, K., and Okaybayashi, H., Japn. J. Appl. Phys. 22, 197 (1983).CrossRefGoogle Scholar
16 Chen, C.K., Pfeiffer, L., West, K.W., Geis, M.W., Darack, S., Achaibar, G., Mountain, R.W., and Tsaur, B-Y. in Semiconductor-On-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Proc. 53, Pittsburgh, PA 1986) pp. 5358.Google Scholar
17 Pfeiffer, L., Gelman, A.E., Jackson, K.A., West, K.W., and Batstone, J.L., Appl. Phys. Lett. 51, 1256 (1987).CrossRefGoogle Scholar