Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-27T02:40:40.419Z Has data issue: false hasContentIssue false

Soft X-Ray Photoelectron Spectroscopy Of Bi-Metallic Interfacial Bonding

Published online by Cambridge University Press:  15 February 2011

N. D. Shinn*
Affiliation:
Sandia National Laboratories, Department 1114, Albuquerque, NM 87185
B. Kim
Affiliation:
Pohang Accelerator Laboratory, Pohang Institute of Science and Technology, Pohang 790-600, Korea
A. B. Andrews
Affiliation:
Pohang Accelerator Laboratory, Pohang Institute of Science and Technology, Pohang 790-600, Korea
J. L. Erskine
Affiliation:
Department of Physics, The University of Texas at Austin, Austin, TX 78712
K. J Kim
Affiliation:
Department of Physics, Kon-Kuk University, Seoul 133–701, Korea
T.-H. Kang
Affiliation:
Department of Physics, Kon-Kuk University, Seoul 133–701, Korea
*
(1)Author to whom correspondence should be addressed.
Get access

Abstract

We report the first application of Soft X-ray Photoelectron Spectroscopy (SXPS) to probe the bonding at epitaxial, bi-metallic interfaces with atomic-layer spatial selectivity. Specifically, we have measured the W(4f)7/2 levels of interfacial tungsten atoms for (1×1)Fe/W(110), (1×1)Ni/W(110), and (1×1)PtW(110). For clean W(110), the surface atoms exhibit a W(4f)7/2 peak at -320 meV binding energy with respect to the bulk W(4f)7/2 peak. Upon formation of the metallic overlayers, the interfacial tungsten atoms contribute W(4f)7/2 peaks at -225 meV (Fe/W), -140 meV (Ni/W), and +70 meV (Pt/W) with respect to the bulk W(4f)7/2 peak. The systematic reduction in the binding energy difference between interfacial and bulk tungsten atoms for Fe, Ni, and Pt correlates with increasing heats of adsorption on W(110), as determined by Temperature Programmed Desorption. This suggests that SXPS, in combination with first principles calculations and Born-Haber thermochemical cycle analyses, can be used as a non-destructive probe of bi-metallic interfacial bonding energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(2)

Present address: National Synchrotron Light Source, Building 725A-U3, Brookhaven National Laboratory, Upton, NY 11973-5000.

References

REFERENCES

1. Gradmann, U. and Waller, G., Surf. Sci. 116, 539 (1982).CrossRefGoogle Scholar
2. Berlowitz, P. J., He, J.-W. and Goodman, D. W., Surf. Sci. 231, 315 (1990).Google Scholar
3. Berlowitz, P. J. and Goodman, D. W., Surf. Sci. 187, 463 (1987).Google Scholar
4. Shivaprasad, S. M., Demmin, R. A. and Madey, T. E., Thin Solid Films 163, 393 (1988).Google Scholar
5. Madey, T. E., Song, K.-J., Dong, C.-Z. and Demmin, R. A., Surf. Sci. 247, 175 (1991).CrossRefGoogle Scholar
6. Shinn, N. D., Peden, C. H. F., Tsang, K. L. and Berlowitz, P. J., Physica Scripta 41, 607 (1990).Google Scholar
7. Kim, B., Shinn, N. D., Andrews, A. B. and Erskine, J. L., Phys. Rev. Lett. (submitted) and to be published.Google Scholar
8. Kim, B., Kim, K. J., Kang, T.-H., Shinn, N. D. and Erskine, J. L., in preparation.Google Scholar
9. Tran Minh Duc, G-uillot, C., Lassailly, Y., Lecante, J., Jugnet, Y. and Verdrine, I. C., Phys. Rev. Lett. 43, 789 (1979).Google Scholar
10. Doniac, S. and Sunjic, M., J. Physics C3, 285 (1970).Google Scholar
11. Riffe, D. M., Wertheim, G. K. and Citrin, P. H., Phys. Rev. Lett. 63, 1976 (1989).CrossRefGoogle Scholar
12. Desjonqueres, M. C., Spanjaard, D., Lassailly, Y. and Guillot, C., Solid State Comm. 34, 807 (1980).CrossRefGoogle Scholar
13. Riffe, D. M. and Wertheim, G. K., Phys. Rev. B 47, 6673 (1993).CrossRefGoogle Scholar
14. Hong, S. C., Freeman, A. J. and Fu, C. L., Phys. Rev. B 38, 12156 (1988).CrossRefGoogle Scholar