Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T23:14:33.889Z Has data issue: false hasContentIssue false

Smoothening of (001) and (111) Cu films epitaxially grown on Si substrates

Published online by Cambridge University Press:  17 March 2011

Rosa Alejandra Lukaszew
Affiliation:
Presently at the Department of Physics and Astronomy, University of Toledo, Toledo, Ohio
Ctirad Uher
Affiliation:
Physics Department, University of Michigan, Ann Arbor, Michigan
Roy Clarke
Affiliation:
Physics Department, University of Michigan, Ann Arbor, Michigan
Get access

Abstract

We report an in-situ study of the MBE growth of Cu films on hydrogen-terminated Si (001) and (7×7) reconstructed Si(111) substrates. Using correlated RHEED and STM data, we find a dramatic smoothing of epitaxial Cu(001) surfaces by annealing the as- grown films in the 120-160oC temperature range and somewhat less so for the Cu (111) films. Our measurements reveal a lower activation energy (0.40 ± 0.04 eV) for inter- terrace mass transport in Cu(001) than for Cu(111) (1.10 ± 0.03 eV) the former possibly influenced by the presence of hydrogen. Scaling analysis of the subsequent Cu growth on the annealed smooth surfaces yields a coarsening exponent of 1/4 for the (001) oriented films while this exponent is 1/3 for the (111) films, providing for the first time experimental data for the same system in these two orientations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Han, E., Kampshoff, E., Wälchli, N., and Kern, K., Phys. Rev. Lett. 74, 1803 (1995); D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
2.Lukaszew, R. A., Sheng, Y., Uher, C., Clarke, R., Appl. Phys. Lett. 76, 724 (2000).Google Scholar
3.Zhang, Z. H., Haswgawa, S. and Ino, S., Surf. Sci. 415, 363 (1998); T.I. M. Bootsma and T. Hibma, Surf. Sci.331-333, 636 (1995).Google Scholar
4.Padyath, R., Seth, J., Babu, S. V., and Matienzo, L. J., J. Appl. Phys. 75, 2326 (1993).Google Scholar
5.Barlett, D., Snyder, C. W., Orr, B. G., and Clarke, R., Rev. Sci. Instrum. 62, 1263 (1991); data acquisition using KSA400, k-Space Assoc. Inc., Ann Arbor, MI 48109.Google Scholar
6.Demczyk, B., Naik, R., Auner, G., Kota, C. and Rao, U., J. Appl. Phys. 75, 1956 (1994).Google Scholar
7.Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986).Google Scholar
8.Zuo, J. -K. and Wendelken, J. F., Phys. Rev. Lett. 70, 1662 (1993).Google Scholar
9.Villain, J., Europhys. Lett. 2, 521 (1986); A. Rettori and J. Villain, J. Phys. (Fr.) 49, 257 (1988).Google Scholar
10.Dürr, H., Wendelken, J. F., and Zuo, J. -K., Surf. Sci. 328, L527 (1995).Google Scholar
11.Family, F., Physica A. 168A, 561 (1990).Google Scholar
12.Siegert, M. and Plishcke, M., Phys. Rev. Lett. 73, 1517 (1994).Google Scholar
13.Amar, J., Phys. Rev. B 60, R11317 (1999).Google Scholar