Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T05:54:24.506Z Has data issue: false hasContentIssue false

Size Effects on Polarization in Epitaxial Ferroelectric Films and the Concept of Ferroelectric Tunnel Junctions Including First Results

Published online by Cambridge University Press:  17 March 2011

H. Kohlstedt
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
N. A. Pertsev
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Waser
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

Extrinsic and intrinsic size effects on the spontaneous polarization of epitaxial ferroelectric films are discussed. The extrinsic effect of electrostatic origin is attributed to the presence of nonferroelectric subsurface layers in the film. Theoretical studies of this depolarizing-field effect are reviewed. It is concluded that, for perovskite ferroelectrics sandwiched between electrodes with a perovskite structure, the depolarizing-field effect on the static properties should be negligible. The extrinsic size effect is also attributed to the thickness dependence of the film in-plane lattice strain Sm, which is due to the generation of misfit dislocations in the epitaxy. Variation of the film polarization with the misfit strain Sm is described by a nonlinear thermodynamic theory, which allows for the mechanical film/substrate interaction. The intrinsic effect of the film surfaces, which is associated with spatial correlations of the ferroelectric polarization, is simultaneously taken into account via the concept of extrapolation length δ. It is shown that, in films grown on compressive substrates (Sm < 0), the strain-induced increase of the mean polarization prevails over the negative intrinsic size effect (δ > 0). As a result, well below the transition temperature, ferroelectricity may be present even in nanometer-thick epitaxial layers. Motivated by this result, we propose the concept of ferroelectric tunnel junction. First results on tunnelling through ultrathin barriers of perovskite ferroelectrics are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Auciello, O., Scott, J. F., and Ramesh, R., Physics Today 51, No 7, 22 (1998).Google Scholar
2. Setter, N. and Waser, R., Acta Mater. 48, 151 (2000).Google Scholar
3. Tybell, T., Ahn, C. H., and Triscone, J.-M., Appl. Phys. Lett. 75, 856 (1999).Google Scholar
4. Ivanchik, I. I., Sov. Phys. Solid State 3, 2705 (1962).Google Scholar
5. Batra, I. P. and Silverman, B. D., Solid State Comm. 11, 291 (1972).Google Scholar
6. Batra, I. P., Würfel, P., and Silverman, B. D., Phys. Rev. Lett. 30, 384 (1973).Google Scholar
7. Kretschmer, R. and Binder, K., Phys. Rev. B20, 1065 (1979).Google Scholar
8. Binder, K., Ferroelectrics 35, 99 (1981).Google Scholar
9. Tilley, D. R. and Žekš, B., Ferroelectrics 134, 313 (1992).Google Scholar
10. Larsen, P. K., Dormans, G. J. M., Taylor, D. J., and Veldhoven, P. J. van, J. Appl. Phys. 76, 2405 (1994).Google Scholar
11. Tagantsev, A. K. and Stolichnov, I. A., Appl. Phys. Lett. 74, 1326 (1999).Google Scholar
12. Watanabe, Y., J. Appl. Phys. 83, 2179 (1998).Google Scholar
13. Watanabe, Y., Phys. Rev. B57, 789 (1998).Google Scholar
14. Yano, Y., Iijima, K., Daitoh, Y., Terashima, T., Bando, Y., Watanabe, Y., Kasatani, H., and Terauchi, H., J. Appl. Phys. 76, 7833 (1994).Google Scholar
15. Yoneda, Y., Okabe, T., Sakuae, K., Terauchi, H., Kasatani, H. and Deguchi, K., J. Appl. Phys. 83, 2458 (1998).Google Scholar
16. Yanase, N., Abe, K., Fukushima, N., and Kawakubo, T., Jpn. J. Appl. Phys. 38, 5305 (1999).Google Scholar
17. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
18. Speck, J. S. and Pompe, W., J. Appl. Phys. 76, 466 (1994).Google Scholar
19. Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Phys. Rev. Lett. 80, 1988 (1998).Google Scholar
20. Pertsev, N. A., Zembilgotov, A. G., and Tagantsev, A. K., Ferroelectrics 223, 79 (1999).Google Scholar
21. Roytburd, A. L., Phys. Status Solidi A37, 329 (1976).Google Scholar
22. Pompe, W., Gong, X., Suo, Z., and Speck, J. S., J. Appl. Phys. 74, 6012 (1993).Google Scholar
23. Pertsev, N. A. and Zembilgotov, A. G., J. Appl. Phys. 78, 6170 (1995).Google Scholar
24. Pertsev, N. A. and Koukhar, V. G., Phys. Rev. Lett. 84, 3722 (2000).Google Scholar
25. Koukhar, V. G., Pertsev, N. A., and Waser, R., Phys. Rev. B64, 214103 (2001).Google Scholar
26. Li, Y. L., Hu, S. Y., Liu, Z. K., and Chen, L. Q., Appl. Phys. Lett. 78, 3878 (2001).Google Scholar
27. Desu, S. B., J. Electrochem. Soc. 140, 2981 (1993).Google Scholar
28. Tilley, D. R. and Žekš, B., Solid State Comm. 49, 823 (1984).Google Scholar
29. Scott, J. F., Duiker, H. M., Beale, P. D., Pouligny, B., Dimmler, K., Parris, M., Butler, D., and Eaton, S., Physica B150, 160 (1988).Google Scholar
30. Zhong, W. L., Qu, B. D., Zhang, P. L. and Wang, Y. G., Phys. Rev. B50, 12375 (1994).Google Scholar
31. Li, S., Eastman, J. A., Li, Z., Foster, C. M., Newnham, R. E., and Cross, L. E., Phys. Lett. A212, 341 (1996).Google Scholar
32. Li, S., Eastman, J. A., Vetrone, J. M., Foster, C. M., Newnham, R. E., and Cross, L. E., Jpn. J. Appl. Phys. 36, 5169 (1997).Google Scholar
33. Zembilgotov, A. G., Pertsev, N. A., Kohlstedt, H., and Waser, R., cond-mat/0111218; J. Appl. Phys. 89 (2002) (in press).Google Scholar
34. Zhang, J., Yin, Z., Zhang, M.-S., and Scott, J. F., Solid State Comm. 118, 241 (2001).Google Scholar
35. Ghosez, Ph. and Rabe, K. M., Appl. Phys. Lett. 76, 2767 (2000).Google Scholar
36. Meyer, B. and Vanderbilt, D., Phys. Rev. B63, 205426 (2001).Google Scholar
37. Tinte, S. and Stachiotti, M. G., Phys. Rev. B64, 235403 (2001).Google Scholar
38. Frenkel, J., Phys. Rev. 36, 1604 (1930).Google Scholar
39. Brinkman, W. F., Dynes, R. C., and Rowell, J. M., J. Appl. Phys. 41, 1915 (1970).Google Scholar
40. The terms “superconducting magnetic tunnel junctions” and “magnetic tunnel junctions” are related to the property of the electrodes, whereas the notion “ferroelectric tunnel junction” is related to a barrier property.Google Scholar
41. Eom, C. B., Cava, R. J., Fleming, R. M., Philips, J. M., Dover, R. B. van, Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., Speck, W. F. Jr., Science 258, 1766 (1992).Google Scholar
42. Contreras, J. Rodríguez, Schubert, J., Poppe, U., Trithaveesak, O., Szot, K., Jia, C. L., Buchal, Ch., Kohlstedt, H. and Waser, R., MRS Fall meeting 2001, this issue.Google Scholar
43. Glazman, L. I. and Matveev, K. A., Sov. Phys. JETP 67, 1276 (1988).Google Scholar
44. Mott, N. F. and Davis, E. A., Electronic Processes in Non-crystalline materials, 2nd ed. (Oxford University Press, NY 1979).Google Scholar
45. Lu, Y., Li, X. W., Gong, G. Q., Xiao, G., Gupta, A., Lecoeur, P., Sun, J. Z., Wang, Y. Y., and David, V. P., Phys. Rev. B 54, 8357 (1996); J. Z.Sun, L. Krusin-Elbaum, P. R.Duncombe, A.Gupta, and R. B.Laibowitz, Appl. Phys. Lett. 70, 1769 (1997). J. Z.Sun, Phil. Trans. R. Soc. Lond. A 356, 1623 (1998).Google Scholar
46. Watanabe, Y., Appl. Phys. Lett. 66, 28 (1995).Google Scholar
47. Watanabe, Y.. Phys. Rev. B57, 5563 (1998).Google Scholar
48. Maruyama, T., Saitoh, M., Sakai, I., and Hidaka, T., Yano, Y., and Noguchi, T., Appl. Phys. Lett. 73, 3542 (1998).Google Scholar
49. Karasawa, J., Sugiura, M., Wada, M., Hafid, M., and Fukami, T., Integr. Ferroelectrics 12, 105, (1996).Google Scholar
50. Scott, J. F., Ferroelectrics Review 1, 1 (1998) p. 1115, and references therein.Google Scholar
51. Sun, J. Z., Roche, K. P. and Parkin, S.S.P., Phys. Rev. B61, 11244 (2000).Google Scholar