Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-18T22:59:22.186Z Has data issue: false hasContentIssue false

Size Effects in Sputtered PZT Thin Films

Published online by Cambridge University Press:  16 February 2011

Seshu B. Desu
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Chien H. Peng
Affiliation:
Department of Materials Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
Lee Kammerdiner
Affiliation:
Ramtron Corporation, Colorado Springs, CO 80918
Paul J. Schuele
Affiliation:
Ramtron Corporation, Colorado Springs, CO 80918
Get access

Abstract

The ferroelectric properties and switching characteristics of rf sputtered PZT thin films were investigated as a function of film thickness (30–300 nm) and grain size. Electron microscopy was used to characterize the film microstructure. The film thickness was measured by ellipsometer. The results were analyzed for the individual contributions of film thickness and crystallite dimension to the size effects on the properties of ferroelectric thin films. A critical discussion of several different models describing the size effects was also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Jona, F.P. and Shirane, G., ”Ferroelectric Crystals,” Pergamon (1962).Google Scholar
2) Anliker, M., Brugger, H.R. and Kanzig, W., Helv.Phys.Acta., 27, 99 (1954).Google Scholar
3) Bradley, F.N., J. Am.Ceram.Soc., 51, 293 (1968)Google Scholar
4) Kanzig, W., Phys.Rev., 98, 549 (1955).Google Scholar
5) Hardwood, M.Y. and Klassens, H.A., Nature 157, 73 (1950).Google Scholar
6) Sarma, N.C. and McCartney, E.R., J.Aust.Ceram.Soc., 10, 61 (1974).Google Scholar
7) Kneipkamp, H. and Heywang, W., Z.Angew.Phys., 6, 385 (1984).Google Scholar
8) Bussem, W.R., Cross, L.E. and Goswami, A.K., J.Amer.Ceram.Soc., 49, 33 (1966).Google Scholar
9) Ainger, F.W. and Herbert, I.M., Trans.Brit.Ceram.Soc., 54, 410 (1956).Google Scholar
10) Kinoshita, K. and Yamaji, Y., J.Appl.Phys., 47, 371 (1976).Google Scholar
11) Arlt, G., Hennings, D. and With, G. De, J.Appl.Phys., 58, 1619 (1985).Google Scholar
12) Mertz, W.J., J.Appl.Phys., 27, 938 (1956).Google Scholar
13) Shibata, H. and Toyoda, H., J.Phys.Soc.Jpn., 17, 404 (1962).Google Scholar
14) Drougard, M.E. and Landauer, R., J.Appl.Phys., 30, 1663 (1959).Google Scholar
15) Glogar, P. and Janovec, V., Czech.J.phys., 13, 261 (1963).Google Scholar
16) Bliton, J.L. and Havell, R., Amer.Ceram.Soc.Bull., 41, 712 (1962).Google Scholar
17) Muller, E.K., Nicholoson, B.J. and Francombe, M.H., J.Electrochem.Soc., 110, 969 (1962).Google Scholar
18) Dudkevich, V.P., et al., Bull.Acad.Sci. USSR, Phys.Ser., 39, 141 (1975).Google Scholar
19) Dudkevich, V.P. and Fesenko, E.G., Ferroelectrics, 22, 787 (1978).Google Scholar
20) Tomashpolskii, Yu.Ya. and Sevostyanov, M.A., Fiz.Tverd.Tela, 14, 2686 (1972).Google Scholar
21) Tomashpolskii, Yu.Ya., Lubnin, E.N. and Sevostianov, M.A., Ferroelectrics, 22, 785 (1978).Google Scholar
22) Feldman, C., Rev.Sci.Instrum., 26, 463 (1955).Google Scholar
23) Slack, J.R. and Burfoot, J.C., J.Phys. C 4, 898 (1971).Google Scholar
24) Scott, J.F., et al, J.Appl.Phys., 64, 166 (1989).Google Scholar
25) Kwok, C.K., Desu, S.B., and Kammerdiner, L., This Proceedings.Google Scholar
26) Hacney, S.A. and Ojard, G.C., Scripta Met., 22, 1731 (1988).Google Scholar
27) Ivanchik, I.I., Fiz.Tverd.Tela., 3, 141 (1965).Google Scholar
28) Bursian, E.V., et al, Fiz.Tverd.Tela, 12, 1850 (1970).Google Scholar
29) Coufova, P. and Arend, H., Czech.J.Phys., B 12, 309 (1962).Google Scholar
30) Buinov, N.S. and Syrtsov, S.R., Sov.Phys.Solid State, 26, 2094 (1984).Google Scholar