Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T08:09:23.293Z Has data issue: false hasContentIssue false

Site Occupation of Implanted Te in Gaas As a Function of Implantation Dose

Published online by Cambridge University Press:  26 February 2011

G. Langouche
Affiliation:
University of Leuven, Instituut voor Kern- en tralingsfysika, Celestijnenlaan 200 D, B-3030 Leuven, Belgium
D. Schroyen
Affiliation:
University of Leuven, Instituut voor Kern- en tralingsfysika, Celestijnenlaan 200 D, B-3030 Leuven, Belgium
H. Bemelmans
Affiliation:
University of Leuven, Instituut voor Kern- en tralingsfysika, Celestijnenlaan 200 D, B-3030 Leuven, Belgium
M. Van Rossum
Affiliation:
IMEC, Kapeldreef 75, B-3030 Leuven, Belgium.
W. Deraedt
Affiliation:
IMEC, Kapeldreef 75, B-3030 Leuven, Belgium.
M. de Potter
Affiliation:
IMEC, Kapeldreef 75, B-3030 Leuven, Belgium.
Get access

Abstract

Te atoms were implanted in GaAs with doses ranging from 1013 to 1016 atoms/cm2, and annealed with the rapid thermal annealing technique. The samples were studied by Mössbauer Spectroscopy, Rutherford Backscattering Spectroscopy – Channeling, and the Van der Pauw-method. While at the lowest implantation dose an unperturbed substitutional site is observed at all annealing temperatures, at the highest implantation dose a strong deviation from a central position in an unperturbed configuration is observed at all temperatures. At the intermediate doses a high degree of substitutionality is observed between annealing temperatures of 200°C and 500°C only.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Pearton, S.J., Poate, J.M., Sette, F., Gibson, J.M., Jacobson, D.C. and Williams, J.S., Nucl. Instr. Meth. B19/20, 369 (1987).Google Scholar
[2]Takai, M., Gamo, K., Masuda, K. and Namba, S., Jap. J. Appl. Phys. 12, 1926 (1973).Google Scholar
[3]Campisano, S.U., Foti, G., Baeri, F., Grimaldi, M.G. and Rimini, E., Appl. Phys. Lett. 37, 719 (1980).Google Scholar
[4]Sealy, B.J., Kular, S.S., Stephens, K.G., Sadana, D. and Booker, G.R., Rad. Eff. 48, 121 (1980).Google Scholar
[5]Pianetta, P., Amano, J., Woolhouse, G. and Stolte, C.A., in Laser and Electron-Beam Solid Interactions and Materials Processing, edited by Gibbons, J.F. (Elsevier, New York, 1981), p 239.Google Scholar
[6]Takai, M., Gamo, K., Masuda, K., Namba, S., Jap. J. Appl. Phys. 14, 1935 (1975).Google Scholar
[7]Bhattacharya, R.S., Rai, A.K., Yeo, Y.K., Pronko, P.P. and Park, Y.S., Nucl. Instr. Meth. 209/210, 637 (1983).Google Scholar
[8]Sette, F., Pearton, S.J., Poate, J.M. and Rowe, J.E., Phys. Rev. Lett. 56, 2637 (1986).Google Scholar
[9]Greaves, G.N., Halfpenny, P.J., Lamble, G.M. and Roberts, K.J., J. de Physique Colloque 47, C8, 901 (1986).Google Scholar
[10]Morgan, T.N., Phys. Rev. Lett. 58, 1280 (1987).Google Scholar
[11]Schroyen, D., Dezsi, I. and Langouche, G., Nucl. Instr. Meth. B15, 410 (1986).Google Scholar
[12]Schroyen, D., Hendrickx, P. and Langouche, G., Materials Science Forum, 10/12, 1177 (1986).Google Scholar
[13]Niesen, L., Boerma, D.O. and Oun, Z. Yi, Hyp. Int. 35, 729 (1987).Google Scholar
[14]Schroyen, D., PhD. Thesis, Leuven University 1987 (unpublished).Google Scholar
[15]Van Rossum, M., Langouche, G., Mishra, K.C. and Das, T.P., Phys. Rev. B 28, 6086 (1983).Google Scholar
[16]Kemerink, G.J., de Waard, H., Niesen, L. and Boerma, D.O., Hyp. Int. 14, 53, (1983).Google Scholar