Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-20T07:48:31.919Z Has data issue: false hasContentIssue false

Si/SiO2 Interface Studies by Immersion Ellipsometry

Published online by Cambridge University Press:  21 February 2011

Q. Liu
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, N. C. 27599-3290
Ea. Irene
Affiliation:
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, N. C. 27599-3290
Get access

Abstract

The mechanisms associated with Si/SiO2 interface annealing and thermal oxidation conditions were studied by spectroscopic immersion ellipsometry. Essentially, this surface sensitive ellipsometry technique uses liquids that match the refractive index of the films, thereby optically removing the films.

With the use of an optical model, it is shown that at high annealing temperatures viscous relaxation dominates, while at low annealing temperatures the suboxide reduction is apparent. It is also shown that with the thickening SiO2 overlayer, the thickness of the suboxide layer at the interface increases and the average radius of the crystalline silicon protrusions decreases for the three different orientation studied. These results are consistent with the commonly accepted Si oxidation model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carim, A. H. and Sinclair, R., Mater. Lett. 5, 94 (1987).CrossRefGoogle Scholar
2. Ravindra, N. M., Fathy, D., Narayan, J., Srivastava, J. K., and Irene, E. A., J. Mater. Res. 2, 216 (1987).CrossRefGoogle Scholar
3. Hahn, P. O., Henzler, M., J. Appl. Phys. 52, 4122 (1981).CrossRefGoogle Scholar
4. Taft, E. A. and Cordes, L., J. Electrochem. Soc. 126, 131 (1979).CrossRefGoogle Scholar
5. Aspnes, D. E. and Theeten, J. B., J. Electrochem. Soc. 127, 1359 (1980).CrossRefGoogle Scholar
6. Kalnitsky, A., Tay, S. P., Ellul, J. P., Chongsawangvirod, S., Andrews, J. A. and Irene, E. A., J. Electrochem. Soc. 137, 234 (1990).CrossRefGoogle Scholar
7. Nayar, V., Pickering, C. and Hodge, A. M., Thin Solid Films 195, 185 (1991).CrossRefGoogle Scholar
8. Jellison, G. E. Jr., J. Appl. Phys. 69, 7627 (1991).CrossRefGoogle Scholar
9. Yakovlev, V. A. and Irene, E. A., J. Electrochem. Soc. 139, No.5, 1450(1992).CrossRefGoogle Scholar
10. Yakovlev, V. A., Liu, Q. and Irene, E. A., J. Vac. Sci. Technol. A 10, 427(1992).CrossRefGoogle Scholar
11. A, R. M.. Azzam and Bashara, N. W., Ellipsometry and Polarized Light, North Holland, Amsterdam (1977).Google Scholar
12. Kern, W. and Puotinen, D. A., RCA Rev. 31, 187(1970).Google Scholar
13. Liu, X., Andrews, J. W. and Irene, E. A., J. Electrochem. Soc. 138, 1106 (1991).CrossRefGoogle Scholar
14. Aspnes, D. E., Thin Solia Films, 89, 249(1982).CrossRefGoogle Scholar
15. Deal, B. E. and Grcve, A. S., J. Appl. Phys. 36, 3770 (1965).CrossRefGoogle Scholar
16. Irene, E. A., CRC Crit. Rev. Sol. State Mat. Sci. 14, 175(1988).CrossRefGoogle Scholar
17. Rubloff, G. W., Hoffmann, K., Liehr, M. and Young, D. R., Phys. Rev. Lett. 58, 2379 (1987).CrossRefGoogle Scholar