Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T17:16:36.702Z Has data issue: false hasContentIssue false

Single-Crystal Silicon Etching Characteristics Using Excimer Laser Cℓ2 GAS

Published online by Cambridge University Press:  21 February 2011

T. Arikado
Affiliation:
Toshiba R&D Center, 1, Toshiba-cho, Saiwai-ku, Kawasaki, Japan
M. Sekine
Affiliation:
Toshiba R&D Center, 1, Toshiba-cho, Saiwai-ku, Kawasaki, Japan
H. Okano
Affiliation:
Toshiba R&D Center, 1, Toshiba-cho, Saiwai-ku, Kawasaki, Japan
Y. Horiike
Affiliation:
Toshiba R&D Center, 1, Toshiba-cho, Saiwai-ku, Kawasaki, Japan
Get access

Abstract

Single-crystal Si etching characteristics using an excimer laser (308 nm, XeCℓ) in the Cℓ2 gas have been studied. In lightly doped n-type and p-type Si, the etch rate of (100) is higher than that of (111), thus the (111) sidewall appears clearly for the irradiation to (100), while both orientations show almost the same etch rates in n+-doped Si. The n-type Si is etched spontaneously even by photo-dissociated Cℓ radicals generated in the gas phase, but no p-type Si etching occurs without direct irradiation. In addition, both types of etch rate-dependence on sheet resistance demonstrate that the number of electrons in the conduction band plays an essential role in the Si etching. This fact supports the field-assisted mechanism in the plasma etching proposed by Winters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ephrath, L. M. and Bennet, R. S., J. Electrochem Soc. 129, 1833 (1982).Google Scholar
2. Kurosawa, K., Horiike, Y., Okano, H., and Okumura, K., Proc. 2nd Symp. Dry Processes (Inst. Electr. Eng., Tokyo) p. 43 (1980).Google Scholar
3. Horiike, Y., Tanuma, Y., Okumura, K. and Iizuka, H., Proc. 1st Symp. Dry Processes (Inst. Electr. Eng., Tokyo) p. 49 (1979).Google Scholar
4. Yoshida, Y. and Watanabe, T., Proc. 5th Symp. Dry Processes (Inst. Electr. Eng., Tokyo) p. 4 (1983).Google Scholar
5. Okano, H., Yamazaki, T., Sekine, M., and Horiike, Y., Proc. 4th Symp. Dry Processes (Inst. Electr. Eng., Tokyo) p. 6 (1982).Google Scholar
6. Akiya, H., Proc. 3rd Symp. Dry Processes (Inst. Electr. Eng., Tokyo), p. 119 (1981).Google Scholar
7. Chuang, T. J., J. Chem. Phys. 74, 1453 (1981).CrossRefGoogle Scholar
8. Ehrlich, D. J., Osgood, R. M., and Deutsch, T. F., Appl. Phys. Lett. 38, 1018 (1981).CrossRefGoogle Scholar
9. Okano, H., Horiike, Y., and Sekine, M., E.C.S. Spring Meeting Electrochem. Soc. Extended AbstractNo. 430,San Francisco (1983).Google Scholar
10. Sekine, M., Okano, H., and Horiike, Y., Proc. 5th Symp. Dry Processes (Inst. Electr. Eng., Tokyo) p. 97 (1983).Google Scholar
11. Flamm, D. L. and Donnelly, V. M., Plasma Chem. Plasma Process 1, 330 (1981).Google Scholar
12. Winters, H. F., Coburn, J. W., and Chuang, T. J., J. Vac. Sci. Technol., B1, 469 (2983).Google Scholar
13. Kure, T. and Hashimoto, N., Proc. 1st Symp. Dry Processes (Inst. Electr. Eng., Tokyo), p. 31 (1979).Google Scholar