Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-20T14:33:40.675Z Has data issue: false hasContentIssue false

Single Quantum Well Heterostructures of MgZnO/ZnO/MgZnO on C-Plane Sapphire

Published online by Cambridge University Press:  10 February 2011

S. Choopun
Affiliation:
CSR, Department of Physics, University of Maryland, College Park, Maryland 20742
D. M. Chalk
Affiliation:
CSR, Department of Physics, University of Maryland, College Park, Maryland 20742
W. Yang
Affiliation:
CSR, Department of Physics, University of Maryland, College Park, Maryland 20742
R. D. Vispute
Affiliation:
CSR, Department of Physics, University of Maryland, College Park, Maryland 20742
S. B. Ogale
Affiliation:
CSR, Department of Physics, University of Maryland, College Park, Maryland 20742
R. P. Sharma
Affiliation:
CSR, Department of Physics, University of Maryland, College Park, Maryland 20742
T. Venkatesan
Affiliation:
CSR, Department of Physics, University of Maryland, College Park, Maryland 20742
Get access

Abstract

The single quantum well heterostructures of MgZnO/ZnO/MgZnO were grown on c-plane sapphire substrate by pulsed laser deposition. The well width was varied from 10 nm to 40 nm by controlling the deposition rate via number of laser pulsed on ZnO target. Using photoluminescence spectroscopy, we have observed a blue shift with respect to a thick ZnO reference sample when the well width was decreased. These results were fitted with calculations based on the simple square well model using the appropriate electron and holes effective masses. The quantized-energy and band offset as a function of well width, growth conditions, interface roughness, and possible quantum size effects on the quantum wells are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S. and Fasol, G., (The Blue Laser Diode, Springer, Berlin, 1997).Google Scholar
[2] Choopun, S., Vispute, R. D., Noch, W., Balsamo, A., Sharma, R. P., Venkatesan, T., Illiadis, A. and Look, D. C., Appl. Phys. Lett. 75, 3947 (1999).Google Scholar
[3] Vispute, R. D., Choopun, S., Li, Y. H., Chalk, D. M., Ogale, S. B., Sharma, R. P., Venkatesan, T. and Iliadis, A., MRS proceeding 1999-2000 (in press).Google Scholar
[4] Kawasaki, M., Ohtomo, A., Ohkubo, I., Koinuma, H., Tang, Z. K., Yu, P., Wang, G.K.L., Zhang, B. P., and Segawa, Y., Mater. Sci. Eng B 56, 239 (1998).Google Scholar
[5] Bagnall, D. M., Chen, Y. F., Zhu, Z., Yao, T., Koyama, S., Shen, M. Y., and Goto, T., Appl. Phys. Lett. 70, 2230 (1997).Google Scholar
[6] Ohtomo, A., Kawasaki, M., Ohkubo, I., Koinuma, H., Yasuda, T. and Segawa, Y., Appl. Phys. Lett. 75, 980 (1999).Google Scholar
[7] Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).Google Scholar
[8] Sharma, A. K., Narayan, J., Muth, J. F., Teng, C. W., Jin, C., Kvit, A., Kolbas, R. M., and Holland, O. W., Appl. Phys. Lett. 75, 3327 (1999).Google Scholar
[9] Berger, L. I., (Semiconductor Materials, CRC press, Florida, 1997), p. 184.Google Scholar
[10] Ohtomo, A., Shiroki, R., Ohkubo, I., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 4088 (1999).Google Scholar