Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-11T09:15:16.244Z Has data issue: false hasContentIssue false

Single Mode Operation of Impurity-Induced Disordering Large Area Vertical Cavity Surface Emitting Lasers

Published online by Cambridge University Press:  10 February 2011

C. W. Lo
Affiliation:
The University of Hong Kong, Department of Electrical and Electronic Engineering, Pokfulam Road, Hong Kong.
S. F. Yu
Affiliation:
The University of Hong Kong, Department of Electrical and Electronic Engineering, Pokfulam Road, Hong Kong.
Get access

Abstract

Vertical-cavity surface-emitting lasers (VCSELs) with suitable interdiffusion quantum wells profile by the use of selective impurity-induced disordering is proposed for high power single mode operation in large area devices. It is shown that the transverse optical confinement in the quantum well active region formed by the diffusion profile counteracts the influence of carrier spatial hole burning for VCSELs biased at high injection current Results indicate that a single mode operation can be maintained in VCSELs with the diameter of core region equal to 50μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lee, Y. H., Tell, K., Brown-Goebeler, K., Jewell, J. L. and Hove, J. V., Electron. Lett., 26, 710 (1990).Google Scholar
[2] Geels, R. S. and Coldren, L. A., Appl. Phys. Lett., 57, 1605 (1990).Google Scholar
[3] Tauber, D., Wang, G., Geels, R. S., Bowers, J. E., and Coldern, L. A., Appl. Phys. Lett., 62, 325 (1993).Google Scholar
[4] Chang-Hasnain, C. J., Orenstein, M., Von Lehmen, A., Florez, L. T., Harbison, J. P. and Stoffel, N.G., Appl. Phys. Lett., 57, 218 (1990).Google Scholar
[5] Valle, A., Sarma, J. and Shore, K. A., IEEE J. Quantum Electron., 31, 1423 (1995).Google Scholar
[6] Li, E. H. and Weiss, B. L., IEEE J. Quantum Electron., 29, 311 (1993).Google Scholar
[7] Bryan, R. P., Coleman, J. J., Miller, L. M., Givens, M. E., Averback, R. S. and Klatt, J. L., Appl. Phys. Lett., 55, 94(1989).Google Scholar
[8] Ronald Hadley, G., Lear, K. L., Warren, M. E., Choquette, K. D., Scott, J. W. and Corzine, S. W., IEEE J. Quantum Electron., 32, 607 (1996).Google Scholar
[9] Li, E.H., Weiss, B.L., Chan, K.S. and Micallef, J., Appl. Phys. Lett. 62, 550, (1992).Google Scholar
[10] Herny, C.H., Logan, R.A. and Bertness, K.A., J. Appl. Phys. 52, 4457, (1981).Google Scholar
[11] Li, E.H. and Chan, K.S., Electron. Lett., 29, 1233, (1993).Google Scholar