Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T20:48:37.077Z Has data issue: false hasContentIssue false

Simulations of the Dislocation Array at Ge/Si Interfaces

Published online by Cambridge University Press:  21 February 2011

Theodore Kaplan
Affiliation:
Solid State Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831
M. F. Chisholm
Affiliation:
Solid State Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831
Mark Mostoller
Affiliation:
Solid State Division, Oak Ridge National Laboratory. Oak Ridge, TN 37831
Get access

Abstract

When Ge is grown epitaxially on Si(001), the 4% mismatch between the lattice parameters of Ge and Si can produce a regular two-dimensional grid of (a/2) [1,±1,0] edge dislocations at the interface, a checkerboard with a spacing of ∼ 100 Å. We have performed classical molecular dynamical simulations of this checkerboard in large microcrystals. The results show the expected 5-fold plus 7-fold ring structure at the cores of the individual dislocations, and a new closed symmetric structure of 18 atoms at their intersections. Tetrahedral coordination is everywhere retained, with relatively small changes in the bond lengths of less than 10% and in the bond angles of less than 25%. The energetics and dislocation offset of the system are explored for the Stillinger-Weber and Tersoff potentials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chisholm, M. F., Pennycook, S. J., and Jesson, D. E., Mat. Res. Soc. Symp. Proc. 159, 447 (1990).Google Scholar
2. Hornstra, J., J. Phys. Chem Solids 5, 129 (1958).Google Scholar
3. Nandedkar, A. S. and Narayan, J., Phil. Mag. A 56, 625 (1987); Phil. Mag. A 61, 873 (1990).Google Scholar
4. Markland, S., J. Phys. C 4, 44 (1983).Google Scholar
5. Duesbery, M. S. and Richardson, G. Y., Solid State and Materials Sciences 17, 1 (1991).Google Scholar
6. Bigger, J. R. K., Mclnnes, D. A., Sutton, A. P., Payne, M. C., Stich, I., King-Smith, R. D., Bird, D. M., and Clarke, L. J., Phys. Rev. Lett. 69, 2224 (1992).Google Scholar
7. Thomson, R. E. and Chadi, D. J., Phys. Rev. B 29, 889 (1984).Google Scholar
8. DiVincenzo, D. P., Alerhand, O. L., Schluter, M., and Wilkins, J. W., Phys. Rev. Lett. 56, 1925 (1986).Google Scholar
9. Pandey, K. C., Phys. Rev. Lett. 47, 1913 (1981).Google Scholar
10. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
11. Ding, K. and Andersen, C., Phys. Rev. B 34, 6987 (1987).Google Scholar
12. Karimi, M., Kaplan, T., Mostoller, M., and Jesson, D. E., Phys. Rev. B 47, 9931 (1993).Google Scholar
13. Tersoff, J., Phys. Rev. B 39, 5566 (1989).Google Scholar
14. dreidl /rhymes with cradle/ 1: a 4-sided toy marked with Hebrew letters and spun like a top in a game of chance, Webster's Ninth New Collegiate Dictionary. (Merriam-Webster, Springfield, 1989)Google Scholar
15. Vogl, P., Hjalmarson, H. P.. and Dow, J. D., J. Phys. Chem. Solids 44, 365 (1983).Google Scholar
16. Foreman, A. J. E., Acta Met. 3, 322 (1955).Google Scholar