Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T23:24:52.415Z Has data issue: false hasContentIssue false

Simulations of long time scale dynamics using the dimer method

Published online by Cambridge University Press:  21 March 2011

Graeme Henkelman
Affiliation:
Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA
Hannes Jónsson
Affiliation:
Department of Chemistry, Box 351700, University of Washington, Seattle, WA 98195-1700, USA Faculty of Science, VR-II, University of Iceland, 107 Reykjavík, Iceland
Get access

Extract

We have carried out long time scale simulations where the “dimer method” [G. Henkelman and H. Jónsson, J. Chem. Phys. 111, 7010 (1999)] is used to find the mechanism and estimate the rate of transitions within harmonic transition state theory and time is evolved by using the kinetic Monte Carlo method. Unlike traditional applications of kinetic Monte Carlo, the atoms are not assigned to lattice sites and a list of all possible transitions does not need to be specified beforehand. Rather, the relevant transitions are found on the y during the simulation. An application to the diffusion and island formation of Al adatoms on an Al(100) surface is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Eyring, H., J. Chem. Phys. 3, 107 (1935).Google Scholar
[2] Wigner, E., Trans. Faraday Soc. 34, 29 (1938).Google Scholar
[3] Keck, J. C., Adv. Chem. 13, 85 (1967).Google Scholar
[4] Pechukas, P., in Dynamics of Molecular Collisions, edited by Miller, W. (Plenum Press, N.Y., 1976), part B.Google Scholar
[5] Voter, A. F. and Doll, D., J. Chem. Phys. 80, 5832 (1984).Google Scholar
[6] Voter, A. F. and Doll, D., J. Chem. Phys. 82, 80 (1985).Google Scholar
[7] Wert, C. and Zener, C., Phys. Rev. 76, 1169 (1949).Google Scholar
[8] Vineyard, G. H., J. Phys. Chem. Solids 3, 145 (1957).Google Scholar
[9] Voter, A. F., J. Chem. Phys. 106, 4665 (1997).Google Scholar
[10] Voter, A. F., Phys. Rev. Lett. 78, 3908 (1997).Google Scholar
[11] Søensen, M. R. and Voter, A. F., J. Chem. Phys 112, 9599 (2000).Google Scholar
[12] Voter, A. F., Phys. Rev. B 57, R13985 (1998).Google Scholar
[13] Henkelman, G. and Jónsson, H., J. Chem. Phys. 111, 7010 (1999).Google Scholar
[14] Malek, R. and Mousseau, N., Phys. Rev. E 62, 7723 (2000).Google Scholar
[15] Munro, L. J. and Wales, D. J., Phys. Rev. B 59, 3969 (1999).Google Scholar
[16] Voter, A. F., Phys. Rev. B 34, 6819 (1986).Google Scholar
[17] Voter, A. F. and Chen, S. P., Mat. Res. Soc. Symp. Proc. 82, 2384 (1987).Google Scholar
[18] Feibelman, P. J., Phys. Rev. Lett. 65, 729 (1990).Google Scholar
[19] Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).Google Scholar
[20] Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).Google Scholar
[21] Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 16 (1996).Google Scholar
[22] Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
[23] Henkelman, G., Uberuaga, B. P., and Jónsson, H. (unpublished).Google Scholar
[24] Tsemekhman, K., Henkelman, G., and Jónsson, H. (unpublished).Google Scholar