Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T14:15:23.831Z Has data issue: false hasContentIssue false

Silicon Thin-Films from Nanoparticle dispersion: Tailoring Morphological, Electrical and Optical Characteristics.

Published online by Cambridge University Press:  12 July 2011

Etienne Drahi
Affiliation:
Centre Microélectronique de Provence – Georges Charpak, Ecole Nationale Supérieure des Mines de Saint Etienne, 13541 Gardanne, France
Sylvain Blayac
Affiliation:
Centre Microélectronique de Provence – Georges Charpak, Ecole Nationale Supérieure des Mines de Saint Etienne, 13541 Gardanne, France
Patrick Benaben
Affiliation:
Centre Microélectronique de Provence – Georges Charpak, Ecole Nationale Supérieure des Mines de Saint Etienne, 13541 Gardanne, France
Get access

Abstract

Amorphous and microcrystalline silicon are currently used for electronic devices such as solar cells and thin-film transistors. This paper shows that silicon nanoparticle dispersion has the potential to be used as source material for polycrystalline silicon thin-film thus opening a route to solution processed silicon devices. After deposition, a classical thermal or microwave annealing step is used to induce the coalescence of the silicon nanoparticles. Both sintering techniques are studied in terms of morphology, electrical and optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Antoniadis, H., 34th IEEE Photovoltaic Specialists Conference 13, 20912095 (2009).Google Scholar
2. Stupca, M., Alsalhi, M., Al Saud, T., Almuhanna, A., Nayfeh, M.H., Applied Physics Letters 91, (2007).10.1063/1.2766958Google Scholar
3. Bet, Kar, Materials Science and Engineering B 130, 228236 (2006).Google Scholar
4. Lechner, R., PhD. Thesis, Technische Universität München 2009 Google Scholar
5. Ahn, J.H., Lee, J.N., Kim, Y.C., Ahn, B.T., Current Applied Physics 2, 135139 (2002).10.1016/S1567-1739(01)00085-2Google Scholar
6. Zymelka, D., Saunier, S., Molimard, J., Goeuriot, D., Advanced Engineering Materials 13 (2011).Google Scholar
7. Wautelet, M., Solid State Communications 74, 12371239 (1990).10.1016/0038-1098(90)90314-2Google Scholar
8. Goldstein, A.N., Applied Physics A: Materials Science & Processing 62, 3337 (1996).10.1007/BF01568084Google Scholar
9. Greskovich, C., Journal of Materials Science 16, 613619 (1981).10.1007/BF02402777Google Scholar
10. Shaw, N.J. & Heuer, A.H., Acta Metallurgica 31, 5559 (1983).10.1016/0001-6160(83)90063-9Google Scholar
11. Coblenz, W.S., Journal of Materials Science 25, 27542764 (1990).10.1007/BF00584875Google Scholar
12. Frenkel, J., Journal of Physics 9, 385391 (1945).Google Scholar