Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T05:25:34.964Z Has data issue: false hasContentIssue false

Silicon homoepitaxy using tantalum-filament hot-wire chemical vapor deposition

Published online by Cambridge University Press:  01 February 2011

Charles W. Teplin
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Eugene Iwaniczko
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Kim M. Jones
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Robert Reedy
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Bobby To
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Howard M. Branz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Get access

Abstract

We have studied silicon films grown epitaxially on silicon wafers using hot-wire chemical vapor deposition (HWCVD) with a tantalum filament. Silicon films were grown on (100)-oriented hydrogen terminated silicon wafers at temperatures from 175°C to 480°C, using a Ta filament 5 cm from the substrate to decompose pure SiH4 gas. The progression of epitaxy was monitored using real-time spectroscopic ellipsometry (RTSE). Analysis using RTSE, transmission electron microscopy (TEM), and scanning electron microscopy shows that at a characteristic thickness, hepi all of the films break down into a-Si:H cones. Below 380°C, both hepi and the thickness of the transition to pure a-Si:H increase with increasing temperature. Above 380°C, hepi was not observed to increase further but TEM images show fewer defects in the epitaxial regions. Secondary ion-mass spectrometry shows that the oxygen concentration remains nearly constant during growth (<1018 cm-3). The hydrogen concentration is found to increase substantially with film thickness from 5·1018 to 5·1019 cm-3, likely due to the incorporation of hydrogen into the a-Si:H cones that grow after the breakdown of epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Eaglesham, D.J., Gossmann, H.J. and Cerullo, M., Phys. Rev. Lett. 65, 1227 (1990).10.1103/PhysRevLett.65.1227Google Scholar
2 Rosenblad, C., Deller, H.R., Dommann, A., Meyer, T., Schroeter, P. and Kanel, H. von, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 16, 2785 (1998).10.1116/1.581422Google Scholar
3 Rau, B., Sieber, I., Selle, B., Brehme, S., Knipper, U., Gall, S. and Fuhs, W., Thin Solid Films 451-52, 644 (2004).10.1016/j.tsf.2003.11.058Google Scholar
4 Schwarzkopf, J., Selle, B., Bohne, W., Rohrich, J., Sieber, I. and Fuhs, W., J. of Appl. Phys. 93, 5215 (2003).10.1063/1.1563059Google Scholar
5 Seitz, H. and Schroder, B., Solid State Commun. 116, 625 (2000).10.1016/S0038-1098(00)00391-4Google Scholar
6 Thiesen, J., Iwaniczko, E., Jones, K.M., Mahan, A. and Crandall, R., Appl. Phys. Lett. 75, 992 (1999).10.1063/1.124576Google Scholar
7 Mason, M.S., Chen, C.M. and Atwater, H.A., Thin Solid Films 430, 54 (2003).10.1016/S0040-6090(03)00138-XGoogle Scholar
8 Wang, Q., Page, M.R., Xu, X.Q., Iwaniczko, E., Williams, E. and Wang, T.H., Thin Solid Films 430, 208 (2003).10.1016/S0040-6090(03)00112-3Google Scholar
9 Bergmann, R.B., Zaczek, C., Jansen, N., Oelting, S. and Werner, J.H., Appl. Phys. Lett. 72, 2996 (1998).10.1063/1.121519Google Scholar
10 Collins, R.W. and Ferlauto, A.S., Current Opinion in Solid State & Materials Science 6, 425 (2002).10.1016/S1359-0286(02)00095-5Google Scholar
11 Kim, S. and Collins, R.W., Appl. Phys. Lett. 67, 3010 (1995).10.1063/1.114935Google Scholar
12 Teplin, C.W., Iwaniczko, E., Perkins, J.D., Levi, D.H., Jones, K.M., and Branz, H.M., accepted for publication in J. of Appl. Phys.Google Scholar
13 Eaglesham, D.J., J. of Appl. Phys. 77, 3597 (1995).10.1063/1.358597Google Scholar
14 Nerding, M., Oberbeck, L., Wagner, T.A., Bergmann, R.B. and Strunk, H.P., J. of Appl. Phys. 93, 2570 (2003).10.1063/1.1542657Google Scholar
15 Binns, M.J., McQuaid, S.A., Newman, R.C. and Lightowlers, E.C., Semiconductor Science And Technology 8, 1908 (1993).10.1088/0268-1242/8/10/021Google Scholar
16Note that cross sections that do not cut directly through the nucleation point of a cone appear as hyperbolas and seem to have larger growth angles.Google Scholar
17 Jorke, H., Herzog, H.J. and Kibbel, H., Phys. Rev. B 40, 2005 (1989).10.1103/PhysRevB.40.2005Google Scholar
18 Thiesen, J., Branz, H.M. and Crandall, R.S., Appl. Phys. Lett. 77, 3589 (2000).10.1063/1.1328767Google Scholar